to a CM structure over R. We will give examples to show that the choice of L can
affect the the answer to some of the lifting questions. Even if we know for a given
B and L
that there is a CM lift to characteristic 0 on which the action
of an order in L also lifts, it could be that the CM order L End(B) does not
lift. We will give examples where this happens in 4.1.2 (see Theorem 4.1.1 and the
non-algebraizable universal formal deformation in
1.8.6. Answers to CM lifting problems. The proofs of the following answers
form the backbone of subsequent chapters.
1. By [93, Thm. B], for any g 2 there exist g-dimensional abelian varieties
over an algebraic closure of Fp for which there is no CM lift to characteristic
0. These results are proved in a much stronger form in Chapter 3. Thus,
(R) does not hold in general, so in particular (CML) sometimes fails to hold.
Hence, an isogeny is necessary; that is, it is better to consider (I) than (CML).
2. Building on lifting results for p-divisible groups in Chapter 3, in Chapter 4 we
prove that (I) holds for every B (so a strengthening of (RIN) holds, applying
the isogeny before making a finite extension on the residue field). In fact,
for any CM maximal commutative subfield L
we construct an
isogeny B B to an abelian variety over Fq such that B has a CM lift to
characteristic 0 on which the action of the order Z + pOL in OL also lifts.
The abelian variety B generally depends on L, but we can arrange that
the isogeny to B is a p-power at most
(and examples show that we cannot
arrange it to have degree not divisible by p in general). The CM lifting of B
can be found over an order in a p-adic field whose relative ramification degree
over a specific p-adic reflex field is tightly controlled (usually 1).
3. In contrast with success for (I), if we require R to be normal and do not
increase the residue field (but permit isogenies) then the answer is negative:
in Chapter 2 we give examples for which (IN) fails. Hence, for the existence
of a CM lifting to a normal domain of characteristic 0 we must allow a finite
extension of the initial finite field (and an isogeny), as in Theorem
However, there is a salvage: for each B and choice of L
will give (in Chapter 2) concrete necessary and sufficient conditions in terms
of a Qp-valued CM type Φ on L for (IN) to have an affirmative answer using
a CM lifting to which the action of an order in L (in the isogeny category)
also lifts and yields the specified CM type Φ. In Example 2.1.7 we will give B
for which this necessary and sufficient condition is satisfied for one choice of
(and a suitable Φ) but fails for another choice (and any Φ).
We expect that (sCML) in 1.8.5 does not hold in general, but this is a guess.
1.8.7. Remark. (CM types in (IN) and (I)). In the context of 1.8.5, for any CM
structure L
on the abelian variety B the q-Frobenius endomorphism
ϕ End(B) lies in

since L is its own centralizer in
The combinatorial
data of L-slopes of the L-linear isogeny class of (B, L
is the sequence of
non-negative rational numbers rw = ordw(ϕ)/ordw(q) indexed by the set of places
w of L above p. When L is a CM field, with complex conjugation ι, this satisfies
the self-duality condition rw + rw◦ι = 1 for each w (since ϕ · ι(ϕ) = q in L).
Fix an algebraic closure Qp of Qp and an embedding of Fq into the residue field
of the valuation ring of Qp (so W (Fq)[1/p] canonically embeds into Qp). For any
Previous Page Next Page