12 introduction
xvi) The projective space of relative dimension n over a scheme X will be denoted
by PX
n
. We omit the subscript when there is no danger of confusion.
xvii) If X is a scheme over a scheme T and Y is a T -scheme, then we also write XY
for the fiber product X ×T Y . If Y = Spec R is affine, then we write XR instead
of XSpec R.
xviii) For X a scheme over a scheme T , we denote by Xt the fiber of X over t T .
If C is a scheme over the integer ring OKν of the completion of the number
field K with respect to the valuation ν, then we write for the special fiber. In the
particular case that K = and ν = νp, we write Cp instead of Cνp .
If C is a scheme over the integer ring O of a number field K, then we use the same
notation, not mentioning the base change to OKν .
xix) For R any commutative ring, A a commutative R-algebra, and X an R-scheme,
a morphism x: Spec A X of R-schemes is also called an A-valued point on X.
If A is a field, then we also adopt more conventional language and speak of a point
defined or rational over A. The set of all A-valued points on X will be denoted
by X(A).
xx) If C is a scheme over a valuation ring O and x C (O), then the reduction of x
is denoted by x.
Previous Page Next Page