Contents Preface vii Introduction 1 Notation and conventions 11 Part A. Heights 13 Chapter I. The concept of a height 15 1. The naive height on the projective space over 15 2. Generalization to number fields 17 3. Geometric interpretation 21 4. The adelic Picard group 25 Chapter II. Conjectures on the asymptotics of points of bounded height 35 1. A heuristic 35 2. The conjecture of Lang 38 3. The conjecture of Batyrev and Manin 40 4. The conjecture of Manin 44 5. Peyre’s constant I—the factor α 47 6. Peyre’s constant II—other factors 50 7. Peyre’s constant III—the actual definition 59 8. The conjecture of Manin and Peyre—proven cases 62 Part B. The Brauer group 81 Chapter III. On the Brauer group of a scheme 83 1. Central simple algebras and the Brauer group of a field 84 2. Azumaya algebras 89 3. The Brauer group 93 4. The cohomological Brauer group 94 5. The relation to the Brauer group of the function field 98 6. The Brauer group and the cohomological Brauer group 101 7. The theorem of Auslander and Goldman 103 8. Examples 107 Chapter IV. An application: the Brauer–Manin obstruction 119 1. Adelic points 119 2. The Brauer–Manin obstruction 122 3. Technical lemmata 126 4. Computing the Brauer–Manin obstruction—the general strategy 129 5. The examples of Mordell 132 v

Purchased from American Mathematical Society for the exclusive use of nofirst nolast (email unknown) Copyright 2014 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org. Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.