Contents

Preface vii

Introduction 1

Notation and conventions 11

Part A. Heights

Chapter I. The concept of a height 15

1. The naive height on the projective space over \mathbb{Q} 15
2. Generalization to number fields 17
3. Geometric interpretation 21
4. The adelic Picard group 25

Chapter II. Conjectures on the asymptotics of points of bounded height 35

1. A heuristic 35
2. The conjecture of Lang 38
3. The conjecture of Batyrev and Manin 40
4. The conjecture of Manin 44
5. Peyre’s constant I—the factor α 47
6. Peyre’s constant II—other factors 50
7. Peyre’s constant III—the actual definition 59
8. The conjecture of Manin and Peyre—proven cases 62

Part B. The Brauer group

Chapter III. On the Brauer group of a scheme 83

1. Central simple algebras and the Brauer group of a field 84
2. Azumaya algebras 89
3. The Brauer group 93
4. The cohomological Brauer group 94
5. The relation to the Brauer group of the function field 98
6. The Brauer group and the cohomological Brauer group 101
7. The theorem of Auslander and Goldman 103
8. Examples 107

Chapter IV. An application: the Brauer–Manin obstruction 119

1. Adelic points 119
2. The Brauer–Manin obstruction 122
3. Technical lemmata 126
4. Computing the Brauer–Manin obstruction—the general strategy 129
5. The examples of Mordell 132
Part C. Numerical experiments

Chapter V. The Diophantine equation $x^4 + 2y^4 = z^4 + 4w^4$
- Numerical experiments and the Manin conjecture 165
 1. Introduction 166
 2. Congruences 167
 3. Naive methods 169
 4. An algorithm to efficiently search for solutions 169
 5. General formulation of the method 171
 6. Improvements I—more congruences 172
 7. Improvements II—adaptation to our hardware 176
 8. The solution found 182

Chapter VI. Points of bounded height on cubic and quartic threefolds 185
- 1. Introduction—Manin’s conjecture 185
- 2. Computing the Tamagawa number 189
- 3. On the geometry of diagonal cubic threefolds 193
- 4. Accumulating subvarieties 195
- 5. Results 199

Chapter VII. On the smallest point on a diagonal cubic surface 205
- 1. Introduction 205
- 2. Peyre’s constant 208
- 3. The factors α and β 209
- 4. A technical lemma 211
- 5. Splitting the Picard group 212
- 6. The computation of the L-function at 1 216
- 7. Computing the Tamagawa numbers 219
- 8. Searching for the smallest solution 221
- 9. The fundamental finiteness property 222
- 10. A negative result 233

Appendix
- 1. A script in GAP 239
- 2. The list 241

Bibliography 247

Index 261