Contents

Preface ix

Chapter 1. Stationary Fokker–Planck–Kolmogorov Equations 1
  1.1. Background material 1
  1.2. Elliptic equations 7
  1.3. Diffusion processes 11
  1.4. Basic problems 17
  1.5. Existence of densities 23
  1.6. Local properties of densities 29
  1.7. Regularity of solutions to divergence type equations 35
  1.8. Complements, comments, and exercises 43
    (i) Fractional Sobolev classes (43). (ii) Increasing Sobolev regularity of
    solutions (47). (iii) Renormalized solutions (48). (iv) Generalizations of
    the maximum principle of A.D. Aleksandrov and k-Hessians (49).
    Comments (50). Exercises (53).

Chapter 2. Existence of Solutions 55
  2.1. The maximum principle and the Dirichlet problem 55
  2.2. Positive solutions of divergence type equations 60
  2.3. Lyapunov functions and a priori estimates 62
  2.4. Construction of solutions to stationary Fokker–Planck–Kolmogorov
    equations 67
  2.5. Complements, comments, and exercises 70
    (i) Solvability of equations with potentials (70). (ii) Solvability of
    equations on manifolds (71). (iii) The absence of integrable solutions (73).

Chapter 3. Global Properties of Densities 81
  3.1. Square integrability of logarithmic gradients 81
  3.2. Global Sobolev regularity 89
  3.3. Upper estimates for densities 97
  3.4. Harnack’s inequality and lower estimates for densities 99
  3.5. Positivity of densities 107
  3.6. Justification of the results on positivity 114
  3.7. Complements, comments, and exercises 119
    (i) Estimates of solutions on manifolds (119). (ii) More on Harnack’s
    (iv) Differentiability of solutions with respect to a parameter (122).
    Comments (127). Exercises (128).
8.5. Complements, comments, and exercises
(i) Trudinger's version of Moser's lemma (333). Comments (334).
Exercises (335).

Chapter 9. Uniqueness of Solutions to Fokker–Planck–Kolmogorov Equations
9.1. Setting of the problem
9.2. Examples of nonuniqueness
9.3. The case of a diffusion matrix of class VMO
9.4. The case of a Lipschitzian diffusion matrix
9.5. Proof of the main lemma
9.6. Uniqueness of integrable solutions
9.7. Proofs of auxiliary lemmas
9.8. Complements, comments, and exercises
(i) Uniqueness for degenerate equations in the class of absolutely continuous measures (373).
(ii) Probabilistic methods of proving uniqueness (377).
(iii) Uniqueness for degenerate equations in the class of all measures (380).
(iv) Uniqueness for the continuity equation (382).
(v) Estimates in the total variation and Kantorovich metrics (387).
(vi) Mean field games (397). Comments (399). Exercises (401).

Chapter 10. The Infinite-Dimensional Case
10.1. Equations in infinite-dimensional spaces
10.2. Properties of solutions
10.3. Existence in the elliptic case
10.4. Solvability of the Cauchy problem
10.5. Complements, comments, and exercises
(i) Uniqueness in the infinite-dimensional case (426).
(ii) Infinite-dimensional nonlinear equations for measures (430).
Comments (433). Exercises (435).

Bibliography

Subject Index