Contents

Preface ix

Chapter 1. Introduction 1
 1.1. From Geometry to Dynamics 1
 1.2. The Projective Heat Map 3
 1.3. A Picture of the Julia Set 4
 1.4. The Core Results 4
 1.5. Deeper Structure 6
 1.6. A Few Corollaries 8
 1.7. Sketch of the Proofs 8
 1.8. Some Comparisons 9
 1.9. Outline of the Monograph 10
 1.10. Companion Program 11

Part 1. 13

Chapter 2. Some Other Polygon Iterations 15
 2.1. The Midpoint Theorem 15
 2.2. The Midpoint Iteration 15
 2.3. Napoleon’s Theorem 17
 2.4. Napoleon’s Iteration 18
 2.5. Conformal Averaging 19

Chapter 3. A Primer on Projective Geometry 23
 3.1. The Real Projective Plane 23
 3.2. Affine Patches 23
 3.3. Projective Transformations and Dualities 24
 3.4. The Cross Ratio 24
 3.5. The Hilbert Metric 25
 3.6. Projective Invariants of Polygons 27
 3.7. Duality and Relabeling 29
 3.8. The Gauss Group 30

Chapter 4. Elementary Algebraic Geometry 31
 4.1. Measure Zero Sets 31
 4.2. Rational Maps 31
 4.3. Homogeneous Polynomials 32
 4.4. Bezout’s Theorem 32
 4.5. The Blow-up Construction 33
Chapter 5. The Pentagram Map 37
 5.1. The Pentagram Configuration Theorem 37
 5.2. The Pentagram Map in Coordinates 37
 5.3. The First Pentagram Invariant 39
 5.4. The Poincare Recurrence Theorem 40
 5.5. Recurrence of the Pentagram Map 41
 5.6. Twisted Polygons 42
 5.7. The Pentagram Invariants 42
 5.8. Symplectic Manifolds and Torus Motion 43
 5.9. Complete Integrability 44

Chapter 6. Some Related Dynamical Systems 47
 6.1. Julia Sets of Rational Maps 47
 6.2. The One-Sided Shift 48
 6.3. The Two-Sided Shift 51
 6.4. The Smale Horseshoe 51
 6.5. Quasi Horseshoe Maps 52
 6.6. The 2-adic Solenoid 58
 6.7. The BJK Continuum 59

Part 2. 61

Chapter 7. The Projective Heat Map 63
 7.1. The Reconstruction Formula 63
 7.2. The Dual Map 64
 7.3. Formulas for the Projective Heat Map 65
 7.4. The Case of Pentagons 67
 7.5. Some Speculation 68

Chapter 8. Topological Degree of the Map 71
 8.1. Overview 71
 8.2. The Lower Bound 71
 8.3. The Upper Bound 72

Chapter 9. The Convex Case 75
 9.1. Flag Invariants of Convex Pentagons 75
 9.2. The Gauss Group Acting on the Unit Square 76
 9.3. A Positivity Criterion 76
 9.4. The End of the Proof 78
 9.5. The Action on the Boundary 80
 9.6. Discussion 80

Chapter 10. The Basic Domains 81
 10.1. The Space of Pentagons 81
 10.2. The Action of the Gauss Group 82
 10.3. Changing Coordinates 83
 10.4. Convex and Star Convex Classes 84
 10.5. The Semigroup 84
 10.6. A Global Point of View 86
Chapter 11. The Method of Positive Dominance
11.1. The Divide and Conquer Algorithm
11.2. Positivity
11.3. The Denominator Test
11.4. The Area Test
11.5. The Expansion Test
11.6. The Confinement Test
11.7. The Exclusion Test
11.8. The Cone Test
11.9. The Stretch Test

Chapter 12. The Cantor Set
12.1. Overview
12.2. The Big Disk
12.3. The Six Small Disks
12.4. The Diffeomorphism Property
12.5. The Main Argument
12.6. Proof of the Measure Expansion Lemma
12.7. Proof of the Metric Expansion Lemma
12.8. Discussion

Chapter 13. Towards the Quasi Horseshoe
13.1. The Target
13.2. The Outer Layer
13.3. The Inner Layer
13.4. The Last Three pieces

Chapter 14. The Quasi Horseshoe
14.1. Overview
14.2. Existence of The Quasi Horseshoe
14.3. The Invariant Cantor Band
14.4. Covering Property
14.5. Subspace Property
14.6. Attracting Property

Part 3.

Chapter 15. Sketches for the Remaining Results
15.1. The General Setup
15.2. The Solenoid Result
15.3. Local Structure
15.4. The Embedded Graph
15.5. Path Connectivity
15.6. The Postcritical Set
15.7. No Rational Fibration

Chapter 16. Towards the Solenoid
16.1. The Four Strips
16.2. Two Cantor Cones
16.3. Using Symmetry
16.4. The Limiting Arc 138

Chapter 17. The Solenoid 141
17.1. Recognizing the BJK Continuum 141
17.2. Taking Covers 142
17.3. Connectivity and Unboundedness 143
17.4. The Canonical Loop 144
17.5. Using Symmetry for the Cone Points 144
17.6. The First Cone Point 145
17.7. The Second Cone Point 146

Chapter 18. Local Structure of the Julia Set 149
18.1. Blowing Down the Exceptional Fibers 149
18.2. Everything but One Piece 151
18.3. The Last Piece 151
18.4. The Last Point 157
18.5. Some Definedness Results 160

Chapter 19. The Embedded Graph 161
19.1. Defining the Generator 161
19.2. From Generator to Edge 166
19.3. From Edge to Pentagon 167
19.4. Pre-images of the Pentagon 168
19.5. The First Connector 169
19.6. The Second Connection 170
19.7. The Third Connector 172
19.8. The End of the Proof 173

Chapter 20. Connectedness of the Julia Set 175
20.1. The Region Between the Disks 175
20.2. The Local Diffeomorphism Lemma 179
20.3. A Case by Case Analysis 181
20.4. The Final Picture 185

Chapter 21. Terms, Formulas, and Coordinate Listings 187
21.1. Symbols and Terms 187
21.2. Two Important Numbers 189
21.3. The Maps 189
21.4. Some Special Points 189
21.5. The Cantor Set Pieces 190
21.6. The Horseshoe Pieces 190
21.7. The Refinement 192
21.8. Auxiliary Polygons 192

References 193