Contents

List of Tables xiii
List of Figures xv
Preface xix

Part 1. Alice and Bob: Mathematical Aspects
of Quantum Information Theory

Chapter 0. Notation and basic concepts 3
0.1. Asymptotic and nonasymptotic notation 3
0.2. Euclidean and Hilbert spaces 3
0.3. Bra-ket notation 4
0.4. Tensor products 6
0.5. Complexification 6
0.6. Matrices vs. operators 7
0.7. Block matrices vs. operators on bipartite spaces 8
0.8. Operators vs. tensors 8
0.9. Operators vs. superoperators 8
0.10. States, classical and quantum 8

Chapter 1. Elementary convex analysis 11
1.1. Normed spaces and convex sets 11
1.1.1. Gauges 11
1.1.2. First examples: ℓ_p-balls, simplices, polytopes, and convex hulls 12
1.1.3. Extreme points, faces 13
1.1.4. Polarity 15
1.1.5. Polarity and the facial structure 17
1.1.6. Ellipsoids 18
1.2. Cones 18
1.2.1. Cone duality 19
1.2.2. Nondegenerate cones and facial structure 21
1.3. Majorization and Schatten norms 22
1.3.1. Majorization 22
1.3.2. Schatten norms 23
1.3.3. Von Neumann and Rényi entropies 27
Notes and Remarks 29

Chapter 2. The mathematics of quantum information theory 31
2.1. On the geometry of the set of quantum states 31
2.1.1. Pure and mixed states 31
2.1.2. The Bloch ball $D(C^2)$ 32
2.1.3. Facial structure 33
2.1.4. Symmetries 34
2.2. States on multipartite Hilbert spaces 35
 2.2.1. Partial trace 35
 2.2.2. Schmidt decomposition 36
 2.2.3. A fundamental dichotomy: Separability vs. entanglement 37
 2.2.4. Some examples of bipartite states 39
 2.2.5. Entanglement hierarchies 41
 2.2.6. Partial transposition 41
 2.2.7. PPT states 43
 2.2.8. Local unitaries and symmetries of Sep 46
2.3. Superoperators and quantum channels 47
 2.3.1. The Choi and Jamiołkowski isomorphisms 47
 2.3.2. Positive and completely positive maps 48
 2.3.3. Quantum channels and Stinespring representation 50
 2.3.4. Some examples of channels 52
2.4. Cones of QIT 55
 2.4.1. Cones of operators 55
 2.4.2. Cones of superoperators 56
 2.4.3. Symmetries of the PSD cone 58
 2.4.4. Entanglement witnesses 60
 2.4.5. Proofs of Størmer’s theorem 62
Notes and Remarks 63

Chapter 3. Quantum mechanics for mathematicians 67
 3.1. Simple-minded quantum mechanics 67
 3.2. Finite vs. infinite dimension, projective spaces, and matrices 68
 3.3. Composite systems and quantum marginals: Mixed states 68
 3.4. The partial trace: Purification of mixed states 70
 3.5. Unitary evolution and quantum operations: The completely positive maps 71
 3.6. Other measurement schemes 73
 3.7. Local operations 74
 3.8. Spooky action at a distance 75
Notes and Remarks 75

Part 2. Banach and His Spaces: Asymptotic Geometric Analysis

Miscellany 77

Chapter 4. More convexity 79
 4.1. Basic notions and operations 79
 4.1.1. Distances between convex sets 79
 4.1.2. Symmetrization 80
 4.1.3. Zonotopes and zonoids 81
 4.1.4. Projective tensor product 82
 4.2. John and Löwner ellipsoids 84
 4.2.1. Definition and characterization 84
 4.2.2. Convex bodies with enough symmetries 89
7.2.4. The Dvoretzky dimension of standard spaces 195
7.2.5. Dvoretzky’s theorem for general convex bodies 200
7.2.6. Related results 201
7.2.7. Constructivity 205
Notes and Remarks 207

Part 3. The Meeting: AGA and QIT 211

Chapter 8. Entanglement of pure states in high dimensions 213
8.1. Entangled subspaces: Qualitative approach 213
8.2. Entropies of entanglement and additivity questions 215
8.2.1. Quantifying entanglement for pure states 215
8.2.2. Channels as subspaces 216
8.2.3. Minimal output entropy and additivity problems 216
8.2.4. On the $1 \rightarrow p$ norm of quantum channels 217
8.3. Concentration of E_p for $p > 1$ and applications 218
8.3.1. Counterexamples to the multiplicativity problem 218
8.3.2. Almost randomizing channels 220
8.4. Concentration of von Neumann entropy and applications 222
8.4.1. The basic concentration argument 222
8.4.2. Entangled subspaces of small codimension 224
8.4.3. Extremely entangled subspaces 224
8.4.4. Counterexamples to the additivity problem 228
8.5. Entangled pure states in multipartite systems 229
8.5.1. Geometric measure of entanglement 229
8.5.2. The case of many qubits 230
8.5.3. Multiparticle entanglement in real Hilbert spaces 231
Notes and Remarks 232

Chapter 9. Geometry of the set of mixed states 235
9.1. Volume and mean width estimates 236
9.1.1. Symmetrization 236
9.1.2. The set of all quantum states 236
9.1.3. The set of separable states (the bipartite case) 238
9.1.4. The set of block-positive matrices 240
9.1.5. The set of separable states (multipartite case) 242
9.1.6. The set of PPT states 244
9.2. Distance estimates 245
9.2.1. The Gurvits–Barnum theorem 246
9.2.2. Robustness in the bipartite case 247
9.2.3. Distances involving the set of PPT states 248
9.2.4. Distance estimates in the multipartite case 249
9.3. The super-picture: Classes of maps 250
9.4. Approximation by polytopes 252
9.4.1. Approximating the set of all quantum states 252
9.4.2. Approximating the set of separable states 256
9.4.3. Exponentially many entanglement witnesses are necessary 258
Notes and Remarks 260
Chapter 10. Random quantum states 263
 10.1. Miscellaneous tools 263
 10.1.1. Majorization inequalities 263
 10.1.2. Spectra and norms of unitarily invariant random matrices 264
 10.1.3. Gaussian approximation to induced states 266
 10.1.4. Concentration for gauges of induced states 267
 10.2. Separability of random states 268
 10.2.1. Almost sure entanglement for low-dimensional environments 268
 10.2.2. The threshold theorem 269
 10.3. Other thresholds 271
 10.3.1. Entanglement of formation 271
 10.3.2. Threshold for PPT 272
Notes and Remarks 272

Chapter 11. Bell inequalities and the Grothendieck–Tsirelson inequality 275
 11.1. Isometrically Euclidean subspaces via Clifford algebras 275
 11.2. Local vs. quantum correlations 276
 11.2.1. Correlation matrices 277
 11.2.2. Bell correlation inequalities and the Grothendieck constant 280
 11.3. Boxes and games 283
 11.3.1. Bell inequalities as games 284
 11.3.2. Boxes and the nonsignaling principle 285
 11.3.3. Bell violations 289
Notes and Remarks 294

Chapter 12. POVMs and the distillability problem 299
 12.1. POVMs and zonoids 299
 12.1.1. Quantum state discrimination 299
 12.1.2. Zonotope associated to a POVM 300
 12.1.3. Sparsification of POVMs 300
 12.2. The distillability problem 301
 12.2.1. State manipulation via LOCC channels 301
 12.2.2. Distillable states 302
 12.2.3. The case of two qubits 302
 12.2.4. Some reformulations of distillability 304
Notes and Remarks 305

Appendix A. Gaussian measures and Gaussian variables 307
 A.1. Gaussian random variables 307
 A.2. Gaussian vectors 308
Notes and Remarks 309

Appendix B. Classical groups and manifolds 311
 B.1. The unit sphere \(S^{n-1} \) or \(S_{\mathbb{C}^d} \) 311
 B.2. The projective space 312
 B.3. The orthogonal and unitary groups \(\text{O}(n), \text{U}(n) \) 312
 B.4. The Grassmann manifolds \(\text{Gr}(k, \mathbb{R}^n), \text{Gr}(k, \mathbb{C}^n) \) 314
 B.5. The Lorentz group \(\text{O}(1, n - 1) \) 318
Notes and Remarks 319
Appendix C. Extreme maps between Lorentz cones and the S-lemma 321
 Notes and Remarks 324
Appendix D. Polarity and the Santaló point via duality of cones 325
Appendix E. Hints to exercises 329
Appendix F. Notation 375
 General notation 375
 Convex geometry 375
 Linear algebra 376
 Probability 377
 Geometry and asymptotic geometric analysis 378
 Quantum information theory 379
Bibliography 381
 Websites 408
Index 409