Contents

Preface ix
Acknowledgments x

Chapter 1. Introduction: Some Motivating Questions 1
1. Continuation of potentials 1
2. Uniqueness of potentials 2
3. The Schwarz reflection principle 3
4. Szegő’s theorem 3
5. PDE vs. ODE 4
6. Laplacian growth and the inverse potential problem 5
7. Some basic notation 5
Notes 6

Chapter 2. The Cauchy-Kovalevskaya Theorem with Estimates 7
1. Proof of uniqueness 7
2. Proof of existence 8
3. Proofs of accessory lemmas: Fun and useful inequalities 10
Notes 12

Chapter 3. Remarks on the Cauchy-Kovalevskaya Theorem 13
1. The Cauchy problem with holomorphic data 13
2. Transversality of the highest-order derivatives 14
3. The C-K theorem for non-singular hypersurfaces 15
4. The Goursat problem 17
5. Existence of the Riemann function 18
Notes 18

Chapter 4. Zerner’s Theorem 19
1. Real and complex hyperplanes 19
2. Zerner characteristic hypersurfaces 20
3. Proof of Zerner’s theorem 21
4. A corollary: The Delassus-Le Roux theorem 22
Notes 23

Chapter 5. The Method of Globalizing Families 25
1. Globalizing families 25
2. The globalizing principle 25
3. Applications 25
Notes 27

Chapter 6. Holmgren’s Uniqueness Theorem 29
CONTENTS

1. A uniqueness result for harmonic functions 29
2. Holmgren’s uniqueness theorem 30
Notes 33

Chapter 7. The Continuity Method of F. John 35
1. A global uniqueness result 35
2. Exercises 36
Notes 37

Chapter 8. The Bony-Schapira Theorem 39
1. Applications of the Bony-Schapira theorem 39
2. Proof of the Bony-Schapira theorem 41
3. Exercises 42
Notes 43

Chapter 9. Applications of the Bony-Schapira Theorem: Part I - Vekua Hulls 45
1. A uniqueness question for harmonic functions 45
2. A view from \(\mathbb{C}^n \): The Vekua hull 48
3. Is the connectivity condition also necessary? 54
Notes 56

Chapter 10. Applications of the Bony-Schapira Theorem: Part II - Szegő’s Theorem Revisited 57
1. Jacobi polynomial expansions: Generalization of Szegő’s theorem 58
2. Relation to holomorphic PDEs 60
3. Proof of the generalized Szegő theorem 61
4. Nehari’s theorem revisited 64
Notes 70

Chapter 11. The Reflection Principle 73
1. The Schwarz function of a curve 73
2. E. Study’s interpretation of the Schwarz reflection principle 75
3. Failure of the reflection law for other operators 76
Notes 81

Chapter 12. The Reflection Principle (continued) 83
1. The Study relation 83
2. Reflection in higher dimensions 86
3. The even-dimensional case 90
4. The odd-dimensional case 95
Notes 97

Chapter 13. Cauchy Problems and the Schwarz Potential Conjecture 99
1. Analytic continuation of potentials and quadrature domains 101
2. The Schwarz potential conjecture 103
Notes 106

Chapter 14. The Schwarz Potential Conjecture for Spheres 107
Notes 114
Chapter 15. Potential Theory on Ellipsoids: Part I - The Mean Value Property
1. Proof of MacLaurin’s theorem using E. Fischer’s inner product 116
2. The Newtonian potential of an ellipsoid 119
Notes 122
Chapter 16. Potential Theory on Ellipsoids: Part II - There is No Gravity in the Cavity
1. Arbitrary polynomial density 123
2. The standard single layer potential 125
3. Domains of hyperbolicity 127
4. The Schwarz potential conjecture for ellipsoids 128
Notes 130
Chapter 17. Potential Theory on Ellipsoids: Part III - The Dirichlet Problem
1. The Dirichlet problem in an ellipsoid: Polynomial data 133
2. Entire data 134
3. The Khavinson-Shapiro conjectures 136
4. The Brelot-Choquet theorem and harmonic divisors 137
Notes 137
Chapter 18. Singularities Encountered by the Analytic Continuation of Solutions to the Dirichlet Problem
1. The Dirichlet problem: When does entire data imply entire solution? 140
2. When does polynomial data imply polynomial solution? 140
3. The Dirichlet problem and Bergman orthogonal polynomials 142
4. Singularities of the solutions to the Dirichlet problem 142
5. Render’s theorem 144
6. Back to \mathbb{R}^2: Annihilating measures and closed lightning bolts 146
Notes 149
Chapter 19. An Introduction to J. Leray’s Principle on Propagation of Singularities through \mathbb{C}^n
1. Introductory remarks on propagation of singularities 151
2. Local propagation of singularities in \mathbb{C}^n: Leray’s principle 154
Notes 165
Chapter 20. Global Propagation of Singularities in \mathbb{C}^n
1. Global propagation of singularities and Persson equations 167
2. A note on characteristic surfaces for the Laplace operator 176
Notes 178
Chapter 21. Quadrature Domains and Laplacian Growth
1. Dynamics of singularities of the Schwarz potential 182
2. Quadrature domains and Richardson’s theorem 183
3. Exact solutions in the plane 185
4. Algebraicity of planar quadrature domains 186
5. Higher-dimensional quadrature domains need not be algebraic 186
Notes 193
Chapter 22. Other Varieties of Quadrature Domains 195
 1. Ellipsoids as quadrature domains in the wide sense 195
 2. Null quadrature domains 196
 3. Arclength quadrature domains 196
 4. Lemniscates as quadrature domains for equilibrium measure 197
 5. Quadrature domains for other classes of test functions 199
 Notes 201

Bibliography 203

Index 213