Index

Notation
- \mathcal{A}_μ, 4
- $\mathcal{B}(X)$, 3, 47, 141
- $\mathcal{BL}(X)$, 109
- B, 45
- $C[a,b]$, 14
- $C_b(X)$, 13, 139
- $C_b^0(U), C_b^\infty(U), C_b^\infty(U)$, 1
- $d_{FM}(\mu, \nu)$, 110
- $d_K(\mu, \nu)$, 110
- $d_{KR}(\mu, \nu)$, 110
- $d_P(\mu, \nu)$, 104
- dist(x, B), 45
- $d
u/d\mu$, 7
- f^+, f^-, 6
- I_A, 5
- $L^p(\mu)$, 14
- $L^\infty(\mu)$, 18
- $\text{Lip}_1(X)$, 109
- $\mathcal{M}(X)$, 51, 143, 199
- $\mathcal{M}^+(X)$, 51, 143
- $\mathcal{M}_1(X)$, 110
- $\mathcal{M}_0^+(X)$, 110
- $\mathcal{M}_r(X)$, 51, 143, 199
- $\mathcal{M}_t(X)$, 110, 143, 199
- $\mathcal{M}_\sigma(X)$, 143, 199
- $\mathcal{P}(X)$, 51, 143, 199
- $\mathcal{P}_t(X)$, 51, 143, 199
- $\mathcal{P}_r(X)$, 110, 143, 199
- $\mathcal{P}_\sigma(X)$, 143, 199
- supp(μ), 4
- tr A, 33, 69
- $U(a, r)$, 2
- $W_p(\mu, \nu)$, 117
- δ_α, 3
- Γ_μ, 62, 149
- μ^+, μ^-, 3
- $\mu * \nu$, 8, 70, 167
- $\mu_1 \otimes \mu_2$, 8
- $\mu \circ F^{-1}$, 7
- $\mu_n \Rightarrow \mu$, 20, 51, 145
- $\nu \ll \mu$, 7
- $\nu \perp \mu$, 7
- $\nu \sim \mu$, 7
- $\tilde{\mu}$, 30, 70, 167
- $\Pi(\mu, \nu)$, 105, 114
- $\rho \cdot \mu$, 7
- $\sigma(S)$, 2
- $\sigma(E, F)$, 16
- $|x|$, $\langle x, y \rangle$, 1
- $\|f\|_{BL}$, 109
- $\|f\|_p$, 14
- $\|f\|_\infty$, 18
- $\|\mu\|$, 3
- $\|\mu\|_1$, 3
- $\|\mu\|_{FM}$, 109
- $\|\mu\|_{K}$, 110
- $\|\mu\|_{KR}$, 109

- a.e., 3
- Alexandroff (Aleksandrov) A.D., 53, 148
- Ascoli–Arzelà theorem, 15
- absolute continuity of measures, 7
- absolutely convex hull, 17
- absolutely convex set, 17
- almost everywhere, 3
- atom of a measure, 4
- atomless measure, 4
- Baire σ-algebra, 141
- Baire measure, 141
- Banach space, 13
- Banach–Alaoglu theorem, 17
- Banach–Steinhaus theorem, 16
- Berry–Esseen theorem, 37
- Bochner theorem, 31
- Borel σ-algebra, 3, 47, 141
- Borel function, 7
- Borel mapping, 7
- Borel measure, 3, 47, 141
- ball, 2
 - closed, 2
 - open, 2
- Cameron–Martin space, 90
- Cantor set, 4
Čech completeness, 140
Chebyshev inequality, 6
central limit theorem, 22, 36, 188
characteristic functional, 30, 70, 167
closed ball, 2
compact function, 61
compact space (set), 2, 139
compactification (Stone–Čech), 140
compactness, 2, 139
 – weak, 107, 160
complete metric space, 2
completeness
 – weak sequential, 62, 204
completion of a measure, 4
conditional measure, 50
continuous mapping, 2
countably separated set of measures 233
convergence:
 – almost everywhere, 3
 – in distribution, 21, 146
 – in measure, 6
 – in variation, 14
 – setwise of measures, 224
 – weak, 20, 51, 145
convex hull, 17
convex measure, 40, 100
convex set, 17
convolution of a function and a measure, 8
convolution of measures, 8, 70, 167
coupling, 105
covariance operator, 36, 70
cylindrical set, 105, 143, 167
Dini theorem, 193
Dirac measure, 3
density of a measure, 7
diameter, 2
directed set, 46
discrete metric, 2
distribution function, 11
Eberlein–Shmuelian theorem, 19
Egorov theorem, 49
eluding load, 157
empirical measure, 193
equivalence of measures 7
equivalent measures, 7
everywhere dense set, 2
extremely disconnected space, 214
Fatou theorem, 6
Fortet–Mourier norm, 109
Fourier transform, 30, 70, 167
Fréchet space, 67
Fubini theorem, 8
function
 – µ-measurable, 6
 – Borel, 7
 – compact, 61
 – continuous, 2
 – distribution of a measure, 11
 – lower semicontinuous, 53
 – measurable, 5
 – of bounded variation, 10
 – positive-definite, 31
 – upper semicontinuous, 53
functionally closed set, 140
functionally open set, 140
fundamental sequence, 2
 – weakly, 52, 145
Gδ-set, 45
Gaussian density, 8
Gaussian measure, 8, 89
 – standard, 8
Glivenko–Cantelli class, 193
Glivenko–Cantelli theorem, 193
Gromov box distance, 123
Gromov metric triple, 122
Gromov–Hausdorff distance (metric), 123
Gromov–Hausdorff–Prohorov distance, 123
Gromov–Prohorov metric, 123
Grothendieck theorem, 228
Hahn decomposition, 3
Hahn–Banach theorem, 16
Hahn–Jordan decomposition, 3
Hausdorff distance (metric), 123
Hausdorff space, 1
Helly (Helly–Bray) theorem, 23
Hilbert–Schmidt operator, 68
hemicompact space, 174
homeomorphism, 2
image of a measure, 7
indicator function of a set, 5
infinitely divisible distribution, 40
invariance principle, 93
isometry, 2
Kantorovich metric, 110, 117
Kantorovich–Rubinshtein metric, 109
Kantorovich–Rubinshtein norm, 109
Kolmogorov theorem, 84
Le Cam theorem, 61
Lebesgue theorem, 6
Lévy metric, 131
P. Lévy theorem, 33
Lévy–Prohorov metric, 104
Luzin space, 143
Luzin theorem, 145
law of large numbers, 21
locally compact space, 140
logarithmically concave measure, 40, 100
µ-a.e., 3
µ-measurable function, 6
Mackey topology, 228
Michael’s selection theorem, 209
mapping
 – Borel, 7
INDEX

- continuous, 2
- measurable, 7, 49
marginal, 105
matrix distribution of a measure, 122
mean of a measure, 36, 70, 188
measurable function, 5
measurable mapping, 7, 49
measure, 3
 - τ-additive, 49
 - Baire, 141
 - Borel, 3, 47, 141
 - Dirac, 3
 - Gaussian, 8, 89
 - Radon, 3, 47, 141
 - Wiener, 91
 - Young, 231
 - absolutely continuous, 7
 - atomless, 4
 - infinitely divisible, 40
 - conditional, 50
 - convex, 40, 100
 - empirical, 193
 - logarithmically concave, 40, 100
 - outer, 3, 4
 - probability, 3
 - regular, 48, 141
 - signed, 3
 - singular, 7
 - stable, 40
 - standard Gaussian, 8
 - symmetric, 30
 - tight, 48, 142
metric, 1
 - Fortet–Mourier, 109
 - Gromov–Hausdorff, 123
 - Gromov–Hausdorff–Prohorov, 123
 - Gromov–Prohorov, 123
 - Hausdorff, 123
 - Kantorovich, 110, 117
 - Kantorovich–Rubinshtein, 109
 - Lévy, 131
 - Lévy–Prohorov, 104
 - Prohorov, 104
 - Zolotarev, 125
 - box Gromov, 123
 - discrete, 2
metric space, 1
moment, 36
 - strong, 188
 - weak, 188
mutual singularity of measures, 7
negative part of a measure, 3
net, 46
 - convergent, 46
norm, 13
 - Fortet–Mourier, 109
 - Kantorovich, 110
 - Kantorovich–Rubinshtein, 109
 - total variation, 3
normed space, 13
nowhere dense set, 2
nuclear operator, 69
nuclear space, 168
open ball, 2
operator
 - Hilbert–Schmidt, 68
 - bounded, 16
 - compact, 68
 - covariance, 36, 70
 - nuclear, 69
 - selfadjoint, 68
outer measure, 3, 4
Polish space, 45
Preiss theorem, 181
Prohorov space, 171
Prohorov theorem, 59, 62, 107, 161
positive-definite function, 31
positive part of a measure, 3
probability measure, 3
product-measure, 8
Radon measure, 3, 47, 141
Radon–Nikodym density, 7
Radon–Nikodym derivative, 7
Riesz theorem, 15, 51, 143
random process, 84
regular measure, 48, 141
σ-algebra, 2
 - Baire, 141
 - Borel, 3, 47, 141
 - generated by a class, 2
Sazonov topology, 168
Skorohod
 - property, 75, 211
 - representation, 75
 - space, 88
 - theorem, 75
Sobolev class, 127
Souslin space, 50, 143
Stone–Čech compactification, 140
Strassen theorem, 105
selfadjoint operator, 68
semicontinuous function
 - lower, 53
 - upper, 53
seminorm, 17
separable space, 2
sequence
 - fundamental (Cauchy), 2
 - uniformly distributed, 219
 - weakly convergent, 20, 51, 145
 - weakly fundamental, 52, 145
sequential completeness, 62, 204
sequentially Prohorov space, 171
set
 - G_δ, 45
- Cantor, 4
- absolutely convex, 17
- convex, 17
- continuity of a measure, 62, 149
- cylindrical, 105, 143
- everywhere dense, 2
- functionally closed (open), 140
- nowhere dense, 2
- of full measure, 3
- totally bounded, 2
- universally measurable, 49

space
- Banach, 13
- Cameron–Martin, 90
- Čech complete, 140
- Fréchet, 67
- Hausdorff, 1
- Luzin, 143
- Polish, 45
- Prohorov, 171
- Skorohod, 88
- Souslin, 50, 143
- Tychonoff, 140
- compact, 2, 139
- complete metric, 2
- hemicompact, 174
- locally compact, 140
- metric, 1
- normed, 13
- nuclear, 168
- separable, 2
- sequentially Prohorov, 171
- strongly Prohorov, 171
- strongly sequentially Prohorov, 171
- topological, 1
- with the Skorohod property, 75, 211

stable measure, 40
standard Gaussian density, 8
standard Gaussian measure, 8
strict inductive limit, 162
strong Skorohod property, 211
strongly Prohorov space, 171
strongly sequentially Prohorov space, 171
symmetric measure, 30

Tietze–Urysohn theorem, 45
Tychonoff space, 140
Tychonoff theorem, 139
Tychonoff topology, 140

theorem
- A.D. Alexandroff, 53, 148
- Ascoli–Arzelá, 15
- Banach–Alaoglu, 17
- Banach–Steinhaus, 16
- Berry–Esseen, 37
- Bochner, 31
- Dini, 193
- Eberlein–Shmulian, 19
- Egorov, 49
- Fatou, 6
- Fubini, 8
- Glivenko–Cantelli, 193
- Grothendieck, 228
- Hahn–Banach, 16
- Helly (Helly–Bray), 23
- Kolmogorov, 84
- Le Cam, 61
- Lebesgue dominated convergence, 6
- P. Lévy, 33
- Luzin, 145
- Michael’ selection, 209
- Preiss, 181
- Prohorov, 59, 62, 107, 161
- Radon–Nikodym, 7
- Riesz, 15, 51, 143
- Skorohod, 75
- Strassen, 105
- Tietze–Urysohn, 45
- Tychonoff, 139
- Ulam, 48
- Vitali–Scheffé, 6
- central limit, 22, 36, 188
tight family of measures 23, 27, 58, 160
tight measure, 48, 142
topological support of a measure, 4
topological space, 1
topology
- σ(E, F), 16
- weak-*, 16
- Mackey, 228
- Sazonov, 168
- Tychonoff, 140
duality, 16
of setwise convergence, 224
weak, 16, 101, 146
total variation norm, 3
totally bounded set, 2
trace of an operator, 33, 69
Ulam theorem, 48
uniformly distributed sequence, 219
uniformly tight family of measures 23, 27, 58, 160
universally measurable set, 49
Vitali–Scheffé theorem, 6
variation of a function 10
variation of a measure, 3
Wiener measure, 91
Wiener process, 91
weak compactness, 107, 160
weak convergence, 20, 51, 145
weak sequential completeness, 62, 204
weak topology, 16, 101, 146
weakly convergent sequence, 20, 51, 145
weakly fundamental sequence, 52, 145
Young measure, 231
Zolotarev metric, 125