Contents

Chapter 1. Introduction 1
 1. Characteristic factors 1
 2. Towers of factors 3
 3. Cubes, norms, nilfactors, and structure theorems 4
 4. Nilsequences in ergodic theory and in combinatorics 6
Organization of the book 7
Acknowledgments 8

Part 1. Basics 9

Chapter 2. Background material 11
 1. Groups and commutators 11
 2. Probability spaces 14
 3. Polish, locally compact, and compact abelian groups 20
 4. Averages on a locally compact group 22
References and further comments 24

Chapter 3. Dynamical Background 27
 1. Topological dynamical systems 27
 2. Ergodic theory 29
 3. The Ergodic Theorems 36
 4. Multiple recurrence and convergence 38
 5. Joinings 40
 6. Inverse limits of dynamical systems 42
References and further comments 45

Chapter 4. Rotations 47
 1. Topological and measurable rotations 47
 2. The Kronecker factor 52
 3. Decomposition of a system via the Kronecker 55
References and further comments 59

Chapter 5. Group Extensions 61
 1. Group extensions 61
 2. Extensions by a compact abelian group 65
 3. Cocycles and coboundaries 67
References and further comments 78

Part 2. Cubes 81

Chapter 6. Cubes in an algebraic setting 83
1. Basics of algebraic cubes 83
2. Cubes in an abelian group 87
3. Cubes in nonabelian groups 95
4. Cubes in homogeneous spaces 100
References and further comments 105

Chapter 7. Dynamical cubes 107
1. Basics of dynamical cubes 107
2. Properties of topological dynamical cubes 110
References and further comments 112

Chapter 8. Cubes in ergodic theory 113
1. Initializing the construction: the measure $\mu^{[2]}$ and the seminorm $\| \cdot \|_2$ 114
2. Construction of the measures $\mu^{[k]}$ 118
3. The seminorms $\| \cdot \|_k$ 124
4. Dynamical dual functions 127
References and further comments 134

Chapter 9. The Structure factors 135
1. Construction of the structure factors 135
2. Structured systems 143
3. Ergodic seminorms and the centralizer 147
References and further comments 150

Part 3. Nilmanifolds and nilsystems 151

Chapter 10. Nilmanifolds 153
1. Nilpotent Lie groups 153
2. Nilmanifolds 158
3. Subnilmanifolds 162
4. Bases and generators 166
5. Countability of nilmanifolds 170
References and further comments 172

Chapter 11. Nilsystems 175
1. Topological and measure theoretic nilsystems 175
2. Ergodic and minimal nilsystems 179
3. Applications and generalizations 184
4. Unipotent affine transformations of a nilmanifold 188
References and further comments 192

Chapter 12. Cubic structures in nilmanifolds 193
1. Cubes in nilmanifolds and nilsystems 194
2. Gowers seminorms for functions on a nilmanifold 202
3. Algebraic dual functions 206
4. The order k Fourier algebra of a nilmanifold 212
5. Some properties of the Fourier algebra of order k 215
References and further comments 219
Chapter 13. Factors of nilsystems 221
1. Basics of factors of nilsystems 221
2. Quotient by a compact subgroup of the centralizer 227
3. Inverse limits of nilsystems and their intrinsic topology 231
 References and further comments 234

Chapter 14. Polynomials in nilmanifolds and nilsystems 235
1. Polynomial sequences in a group 235
2. Polynomial orbits in a nilmanifold 242
3. Dynamical applications 247
 References and further comments 252

Chapter 15. Arithmetic progressions in nilsystems 255
1. Arithmetic progressions in nilmanifolds and nilsystems 255
2. Ergodic decomposition 260
 References and further comments 264

Part 4. Structure Theorems 265

Chapter 16. The Ergodic Structure Theorem 267
1. Various forms of the Ergodic Structure Theorem 267
2. Nilsequences and a nonergodic Structure Theorem 270
 Factors of inverse limits of nilsystems 274
 References and further comments 275

Chapter 17. Other structure theorems 277
1. A Topological Structure Theorem 278
2. The Inverse Theorem for Gowers norms 280
 References and further comments 283

Chapter 18. Relations between consecutive factors 285
1. Starting the induction and an overview of the proof 285
2. First properties of the extension between consecutive factors 286
3. Cocycles of type k 290
4. From cocycles of type k to systems of order k 294
5. Connectedness 297
 References and further comments 302

Chapter 19. The Structure Theorem in a particular case 303
1. Strategy and preliminaries 303
2. Construction of a group of transformations 306
3. X is a nilsystem 311
 References and further comments 316

Chapter 20. The Structure Theorem in the general case 317
1. Further understanding of cocycles of type k 317
2. Countability 321
3. General cocycles and the Structure Theorem 324
 References and further comments 326
Part 5. Applications 327

Chapter 21. The method of characteristic factors 329
1. The van der Corput Lemma 329
2. Arithmetic progressions and linear patterns 333
3. Convergence of polynomial averages 338
References and further comments 345

Chapter 22. Uniformity seminorms on ℓ^∞ and pointwise convergence of cubic averages 349
1. Uniformity seminorms along a sequence of intervals 349
2. Relations with Gowers norms on \mathbb{Z}_N 355
3. Pointwise convergence of cubic averages 360
References and further comments 364

Chapter 23. Multiple correlations, good weights, and anti-uniformity 365
1. Decompositions for multicorrelations 366
2. Bounding weighted ergodic averages 371
3. Anti-uniformity 376
4. A nilsequence version of the Wiener-Wintner Theorem 379
References and further comments 383

Chapter 24. Inverse results for uniformity seminorms and applications 385
1. Inverse results for uniformity seminorms 385
2. Characterization of good weights for Multiple Ergodic Theorems 392
3. Correlation sequences and nilsequences 394
References and further comments 397

Chapter 25. The comparison method 399
1. Recurrence and convergence for the primes 399
2. Multiple polynomial averages along the primes 405
References and further comments 406

Bibliography 409

Index of Terms 419

Index of Symbols 425