Softcover ISBN:  9780821836729 
Product Code:  SURV/65.R 
List Price:  $129.00 
MAA Member Price:  $116.10 
AMS Member Price:  $103.20 
eBook ISBN:  9781470412920 
Product Code:  SURV/65.R.E 
List Price:  $125.00 
MAA Member Price:  $112.50 
AMS Member Price:  $100.00 
Softcover ISBN:  9780821836729 
eBook: ISBN:  9781470412920 
Product Code:  SURV/65.R.B 
List Price:  $254.00 $191.50 
MAA Member Price:  $228.60 $172.35 
AMS Member Price:  $203.20 $153.20 
Softcover ISBN:  9780821836729 
Product Code:  SURV/65.R 
List Price:  $129.00 
MAA Member Price:  $116.10 
AMS Member Price:  $103.20 
eBook ISBN:  9781470412920 
Product Code:  SURV/65.R.E 
List Price:  $125.00 
MAA Member Price:  $112.50 
AMS Member Price:  $100.00 
Softcover ISBN:  9780821836729 
eBook ISBN:  9781470412920 
Product Code:  SURV/65.R.B 
List Price:  $254.00 $191.50 
MAA Member Price:  $228.60 $172.35 
AMS Member Price:  $203.20 $153.20 

Book DetailsMathematical Surveys and MonographsVolume: 65; 2004; 475 ppMSC: Primary 00; 01; 12; 13; 16; Secondary 03; 06; 08; 14; 15; 18;
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century.
Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian groups; Hilbert's basis theorem and his Nullstellensatz, including the modern formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras and finite skew fields and their extensions by Braver, Kaplansky, Chevalley, Goldie, and others. A special feature of the book is the indepth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians.
Two of the author's prior works,Algebra: Rings, Modules and Categories, I andII (SpringerVerlag, 1973), are devoted to the development of modern associative algebra and ring and module theory. Those works serve as a foundation for the present survey, which includes a bibliography of over 1,600 references and is exhaustively indexed.
In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in “Part II: Snapshots of Some Mathematical Friends and Places”. Beginning with his teachers and fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his FulbrightNATO Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona.
Comments on the first edition:
“Researchers in algebra should find it both enjoyable to read and very useful in their work. In all cases, [Faith] cites full references as to the origin and development of the theorem .... I know of no other work in print which does this as thoroughly and as broadly.”—John O'Neill, University of Detroit at Mercy
“ ‘Part II: Snapshots of Some Mathematical Friends and Places’ is wonderful! [It is] a joy to read! Mathematicians of my age and younger will relish reading ‘Snapshots’.”—James A. Huckaba, University of MissouriColumbia
ReadershipGraduate students, research mathematicians, and other scientists interested in the history of mathematics and science.

Table of Contents

Chapters

1. Direct product and sums of rings and modules and the structure of fields

2. Introduction to ring theory: Schur’s Lemma and semisimple rings, prime and primitive rings, Noetherian and Artinian modules, nil, prime and Jacobson radicals

3. Direct decompositions of projective and injective modules

4. Direct product decompositions of von Neumann regular rings and selfinjective rings

5. Direct sums of cyclic modules

6. When injectives are flat: Coherent FPinjective rings

7. Direct decompositions and dual generalizations of Noetherian rings

8. Completely decomposable modules and the KrullSchmidtAzumaya theorem

9. Polynomial rings over Vamosian and Kerr rings, valuation rings and Prüfer rings

10. Isomorphic polynomial rings and matrix rings

11. Group rings and Maschke’s theorem revisited

12. Maximal quotient rings

13. Morita duality and dual rings

14. Krull and global dimensions

15. Polynomial identities and PIrings

16. Unions of primes, prime avoidance, associated prime ideals, ACC on irreducible ideals, and Annihilator ideals in commutative rings

17. Dedekind’s theorem on the independence of automorphisms revisited

18. Snapshots of some mathematical friends and places


Reviews

From reviews of the first edition … [Regarding Chapter 18,
“Snapshots of Some Mathematical Friends and Places” ] These vignettes are really quite amusing as Faith has a keen (but kind) eye for the eccentricities and gifts of the people he has come to know in the field.The Times of Trenton 
This book offers a wellwritten and very detailed survey of a century of ring theory, module theory and, more generally, associative algebra. The author has selected a great many topics within this ambit and has done an excellent job in presenting them.
Mathematical Reviews


RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
 Book Details
 Table of Contents
 Reviews
 Requests
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century.
Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian groups; Hilbert's basis theorem and his Nullstellensatz, including the modern formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras and finite skew fields and their extensions by Braver, Kaplansky, Chevalley, Goldie, and others. A special feature of the book is the indepth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians.
Two of the author's prior works,
In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in “Part II: Snapshots of Some Mathematical Friends and Places”. Beginning with his teachers and fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his FulbrightNATO Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona.
Comments on the first edition:
“Researchers in algebra should find it both enjoyable to read and very useful in their work. In all cases, [Faith] cites full references as to the origin and development of the theorem .... I know of no other work in print which does this as thoroughly and as broadly.”
—John O'Neill, University of Detroit at Mercy
“ ‘Part II: Snapshots of Some Mathematical Friends and Places’ is wonderful! [It is] a joy to read! Mathematicians of my age and younger will relish reading ‘Snapshots’.”
—James A. Huckaba, University of MissouriColumbia
Graduate students, research mathematicians, and other scientists interested in the history of mathematics and science.

Chapters

1. Direct product and sums of rings and modules and the structure of fields

2. Introduction to ring theory: Schur’s Lemma and semisimple rings, prime and primitive rings, Noetherian and Artinian modules, nil, prime and Jacobson radicals

3. Direct decompositions of projective and injective modules

4. Direct product decompositions of von Neumann regular rings and selfinjective rings

5. Direct sums of cyclic modules

6. When injectives are flat: Coherent FPinjective rings

7. Direct decompositions and dual generalizations of Noetherian rings

8. Completely decomposable modules and the KrullSchmidtAzumaya theorem

9. Polynomial rings over Vamosian and Kerr rings, valuation rings and Prüfer rings

10. Isomorphic polynomial rings and matrix rings

11. Group rings and Maschke’s theorem revisited

12. Maximal quotient rings

13. Morita duality and dual rings

14. Krull and global dimensions

15. Polynomial identities and PIrings

16. Unions of primes, prime avoidance, associated prime ideals, ACC on irreducible ideals, and Annihilator ideals in commutative rings

17. Dedekind’s theorem on the independence of automorphisms revisited

18. Snapshots of some mathematical friends and places

From reviews of the first edition … [Regarding Chapter 18,
“Snapshots of Some Mathematical Friends and Places” ] These vignettes are really quite amusing as Faith has a keen (but kind) eye for the eccentricities and gifts of the people he has come to know in the field.The Times of Trenton 
This book offers a wellwritten and very detailed survey of a century of ring theory, module theory and, more generally, associative algebra. The author has selected a great many topics within this ambit and has done an excellent job in presenting them.
Mathematical Reviews