INDEX
A' =
Z[TT;]
degree 1
«
m
( A »
X = universal covering of X (in §12C, double
Surgery exact sequence; classifying spaces
surgery obstruction map 6
normal invariant r\
structure invariant s(f)
splitting obstruction sM(f)
J^(X),J^
D i f f
,J^
P L
etc.
&(X)
7Tb
Spivak fibration i/x
Gk,PLk,Ok,BGk,G,BG etc.
G/PL.G/TOP
BPLk
BTOPk
L-groups
Lm
algebraic definition of L2k
algebraic definition of Z/2/c+i
algebraic definition of relative L2k+\
algebraic definition of relative L2k
Ln\K),L*{K)
relative forms of Lx, L 2
LSn ,LSn ,LSn
LNn
LPn
algebraic definition of 1-sided LNn
LA,LB,LC,LD,LE,LF
Ls,Lh,LP
the spaces L
m
(i^), Lm(A)
P,q,r,p0,qo,r0
transfer
Surgery obstructions
surgery obstruction map 0
c, Kervaire-Arf invariant
characteristic classes k^i+2{G/PL)
a, signature
multisignature
P
p for circle actions
158
25
10
covering) 21
34,110 ,187
110
117
119
106
109
210,252
133,146
108
109
109
121
255
34
49
68
78
272
93
97
132
147
264
161
259
260
250
178,252
34,110
172,189
,187
189,266
174-176
Hirzebruch-Sullivan classes £(M)J{G/PL),\(G/PL)
splitting invariants 202, [
172
,185
187
196
188
;S22]
Previous Page Next Page