INDEX A' = Z[TT ] degree 1 « m ( A » X = universal covering of X (in §12C, double Surgery exact sequence classifying spaces surgery obstruction map 6 normal invariant r\ structure invariant s(f) splitting obstruction sM(f) J^(X),J^ D i f f ,J^ P L etc. &(X) 7Tb Spivak fibration i/x Gk,PLk,Ok,BGk,G,BG etc. G/PL.G/TOP BPLk BTOPk L-groups Lm algebraic definition of L2k algebraic definition of Z/2/c+i algebraic definition of relative L2k+\ algebraic definition of relative L2k Ln\K),L*{K) relative forms of Lx, L 2 LSn ,LSn ,LSn LNn LPn algebraic definition of 1-sided LNn LA,LB,LC,LD,LE,LF Ls,Lh,LP the spaces L m (i^), Lm(A) P,q,r,p0,qo,r0 transfer Surgery obstructions surgery obstruction map 0 c, Kervaire-Arf invariant characteristic classes k^i+2{G/PL) a, signature multisignature P p for circle actions 158 25 10 covering) 21 34,110 ,187 110 117 119 106 109 210,252 133,146 108 109 109 121 255 34 49 68 78 272 93 97 132 147 264 161 259 260 250 178,252 34,110 172,189 ,187 189,266 174-176 Hirzebruch-Sullivan classes £(M)J{G/PL),\(G/PL) splitting invariants 202, [ 172 ,185 187 196 188 S22]
Previous Page Next Page