X
Contents
4.2. Classical oscillation theory 78
4.3. Renormalized oscillation theory 81
Chapter 5. Random Jacobi operators 87
5.1. Random Jacobi operators 87
5.2. The Lyapunov exponent and the density of states 91
5.3. Almost periodic Jacobi operators 100
Chapter 6. Trace formulas 105
6.1. Asymptotic expansions 105
6.2. General trace formulas and xi functions 109
Chapter 7. Jacobi operators with periodic coefficients 115
7.1. Floquet theory 115
7.2. Connections with the spectra of finite Jacobi operators 119
7.3. Polynomial identities 123
7.4. Two examples: period one and two 124
7.5. Perturbations of periodic operators 126
Chapter 8. Reflectionless Jacobi operators 133
8.1. Spectral analysis and trace formulas 133
8.2. Isospectral operators 140
8.3. The finite-gap case 142
8.4. Further spectral interpretation 150
Chapter 9. Quasi-periodic Jacobi operators and Riemann theta functions 153
9.1. Riemann surfaces 153
9.2. Solutions in terms of theta functions 155
9.3. The elliptic case, genus one 162
9.4. Some illustrations of the Riemann-Roch theorem 165
Chapter 10. Scattering theory 167
10.1. Transformation operators 167
10.2. The scattering matrix 171
10.3. The GePfand-Levitan-Marchenko equations 175
10.4. Inverse scattering theory 180
Chapter 11. Spectral deformations - Commutation methods 185
11.1. Commuting first order difference expressions 185
11.2. The single commutation method 187
11.3. Iteration of the single commutation method 191
11.4. Application of the single commutation method 194
11.5. A formal second commutation 196
Previous Page Next Page