X Contents 4.2. Classical oscillation theory 78 4.3. Renormalized oscillation theory 81 Chapter 5. Random Jacobi operators 87 5.1. Random Jacobi operators 87 5.2. The Lyapunov exponent and the density of states 91 5.3. Almost periodic Jacobi operators 100 Chapter 6. Trace formulas 105 6.1. Asymptotic expansions 105 6.2. General trace formulas and xi functions 109 Chapter 7. Jacobi operators with periodic coefficients 115 7.1. Floquet theory 115 7.2. Connections with the spectra of finite Jacobi operators 119 7.3. Polynomial identities 123 7.4. Two examples: period one and two 124 7.5. Perturbations of periodic operators 126 Chapter 8. Reflectionless Jacobi operators 133 8.1. Spectral analysis and trace formulas 133 8.2. Isospectral operators 140 8.3. The finite-gap case 142 8.4. Further spectral interpretation 150 Chapter 9. Quasi-periodic Jacobi operators and Riemann theta functions 153 9.1. Riemann surfaces 153 9.2. Solutions in terms of theta functions 155 9.3. The elliptic case, genus one 162 9.4. Some illustrations of the Riemann-Roch theorem 165 Chapter 10. Scattering theory 167 10.1. Transformation operators 167 10.2. The scattering matrix 171 10.3. The GePfand-Levitan-Marchenko equations 175 10.4. Inverse scattering theory 180 Chapter 11. Spectral deformations - Commutation methods 185 11.1. Commuting first order difference expressions 185 11.2. The single commutation method 187 11.3. Iteration of the single commutation method 191 11.4. Application of the single commutation method 194 11.5. A formal second commutation 196

Purchased from American Mathematical Society for the exclusive use of nofirst nolast (email unknown) Copyright 1999 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org. Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.