Contents

Preface xi

1 **Precalculus** 1
 1.1 Numbers and Notation in History 1
 1.2 Numbers, Points, and the Algebra of Inequalities 3
 1.3 Intervals 7

2 **Sequences and their Limits** 11
 2.1 Real Sequences 11
 2.2 Limits of Real Sequences 15
 2.3 Convergence to Unknown Limits 26
 2.4 Finding Limits 36
 2.5 Bounded Sets 53
 2.6 The Bisection Algorithm (Optional) 63

3 **Continuity** 69
 3.1 Continuous Functions 70
 3.2 The Intermediate Value Theorem and Inverse Functions 83
 3.3 Extreme Values and Bounds for Functions 92
 3.4 Limits of Functions 100
 3.5 Discontinuities 115
 3.6 Exponentials and Logarithms 119
 3.7 Epsilons and Deltas (Optional) 126

4 **Differentiation** 135
 4.1 Slope, Speed and Tangents 136
 4.2 Formal Differentiation I: The Algebra of Derivatives 146
 4.3 Formal Differentiation II: Exponentials and Logarithms 164
 4.4 Formal Differentiation III: Inverse Functions 171
 4.5 Formal Differentiation IV: The Chain Rule and Implicit Differentiation 176
 4.6 Related Rates 185
 4.7 Extrema Revisited 192
 4.8 Geometric Application of Limits and Derivatives 209
 4.9 Mean Value Theorems 217
 4.10 L'Hôpital’s Rule and Indeterminate Forms 226
 4.11 Continuity and Derivatives (Optional) 237
Contents

5 Integration
- 5.1 Area and the Definition of the Integral 248
- 5.2 General Theory of the Riemann Integral 267
- 5.3 The Fundamental Theorem of Calculus 281
- 5.4 Formal Integration I: Manipulation Formulas 294
- 5.5 Formal Integration II: Trigonometric Functions 306
- 5.6 Formal Integration III: Rational Functions and Partial Fractions ... 314
- 5.7 Improper Integrals .. 337
- 5.8 Geometric Applications of Riemann Sums 348
- 5.9 Riemann’s Characterization of Integrable Functions (Optional) 362

6 Power Series
- 6.1 Local Approximation of Functions by Polynomials 368
- 6.2 Convergence of Series ... 384
- 6.3 Unconditional Convergence .. 398
- 6.4 Convergence of Power Series ... 404
- 6.5 Handling Power Series ... 411
- 6.6 Complex Numbers and Analytic Functions (Optional) 439

A The Rhetoric of Mathematics (Methods of Proof) 445

B Answers to Selected Problems ... 451

Bibliography ... 477

Index ... 481

About the Author ... 491