Contents

Preface ix

1 Background
1.1 Brief History of Mathematical Finance 1
1.2 Options and Derivatives 6
1.3 Speculation and Hedging 12
1.4 Arbitrage 16
1.5 Mathematical Modeling 20
1.6 Randomness 31
1.7 Stochastic Processes 36
1.8 A Model of Collateralized Debt Obligations 42

2 Binomial Models
2.1 Single Period Binomial Models 51
2.2 Multiperiod Binomial Tree Models 57

3 First Step Analysis
3.1 A Coin Tossing Experiment 65
3.2 Ruin Probabilities 70
3.3 Duration of the Gambler’s Ruin 78
3.4 A Stochastic Process Model of Cash Management 84

4 Limit Theorems for Coin Tossing
4.1 Laws of Large Numbers 95
4.2 Moment Generating Functions 99
4.3 The Central Limit Theorem 104

5 Brownian Motion
5.1 Intuitive Introduction to Diffusions 113
5.2 The Definition of Brownian Motion and the Wiener Process 118
5.3 Approximation of Brownian Motion by Coin Tossing Sums 125
5.4 Transformations of the Wiener Process 129
5.5 Hitting Times and Ruin Probabilities 133
5.6 Path Properties of Brownian Motion 137
5.7 Quadratic Variation of the Wiener Process 141
Contents

6 Stochastic Calculus
- 6.1 Stochastic Differential Equations 149
- 6.2 Itô’s Formula 157
- 6.3 Properties of Geometric Brownian Motion 161
- 6.4 Models of Stock Market Prices 168

7 The Black–Scholes Equation
- 7.1 Derivation of the Black–Scholes Equation 179
- 7.2 Solution of the Black–Scholes Equation 184
- 7.3 Put-Call Parity 194
- 7.4 Implied Volatility 200
- 7.5 Sensitivity, Hedging, and the Greeks 205
- 7.6 Limitations of the Black–Scholes Model 212

Endnotes 221

Bibliography 225

Index 229