EDITORIAL COMMITTE E
Jerry L . Bon a
Nicolai Reshetikhi n
Leonard L . Scot t (Chair )
Partially supporte d b y th e NS F gran t DMS-962643 0
and J . S . Guggenhei m Memoria l Foundation ;
partially supporte d b y th e NS F gran t DMS-9022140.
1991 Mathematics Subject Classification. Primar y 53C15, 57N10;
Secondary 58F05 , 57R30 .
ABSTRACT. Th e theor y o f contac t structure s an d th e theor y o f foliation s hav e develope d rathe r
independently. The y com e fro m separat e traditions , an d hav e differen t flavors . However , i n
dimension 3 , the y hav e evolve d i n paralle l direction s tha t hav e powerfu l topologica l application s
involving tight contact structures o n th e on e han d an d taut foliations o n th e other .
The presen t wor k develop s th e foundation s fo r a theor y o f confoliations t o lin k thes e tw o the -
ories, wit h th e ai m o f developin g a combine d toolki t tha t include s bot h th e strongl y geometri c
constructions characteristi c o f foliatio n theor y an d th e analyti c tools , th e connection s t o four -
dimensional topology , an d th e flexibilit y characteristi c o f th e theor y o f contac t structures .
In particular , w e prove tha t ever y C
2
tau t foliatio n ca n b e C°-perturbe d t o giv e a tigh t contac t
structure.
Library o f Congres s Cataloging-in-Publicatio n Dat a
Eliashberg, Y. , 1946-
Confoliations / Yako v M . Eliashberg , Willia m P . Thurston .
p. cm . (Universit y lectur e series , ISS N 1047-3998 ; v. 13)
Includes bibliographica l references .
ISBN 0-8218-0776-5
1. Foliation s (Mathematics ) 2 . Three-manifold s (Topology ) I . Thurston , Willia m P. ,
1946- . II . Title . III . Series : Universit y lectur e serie s (Providence , R . I. ) ; 13.
QA613.62.E45 1997
514'.72—dc21 97-32128
CIP
Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s actin g
for them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e
in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n
reviews, provide d th e customar y acknowledgmen t o f th e sourc e i s given .
Republication, systemati c copying , o r multipl e reproductio n o f any materia l i n this publicatio n
(including abstracts ) i s permitte d onl y unde r licens e fro m th e America n Mathematica l Society .
Requests fo r suc h permissio n shoul d b e addresse d t o th e Assistan t t o th e Publisher , America n
Mathematical Society , P . O. Bo x 6248 , Providence , Rhod e Islan d 02940-6248 . Request s ca n als o
be mad e b y e-mai l t o reprint-permission@ams.org .
© 1998 b y th e America n Mathematica l Society . Al l right s reserved .
The America n Mathematica l Societ y retain s al l right s
except thos e grante d t o th e Unite d State s Government .
Printed i n th e Unite d State s o f America .
@ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s
established t o ensur e permanenc e an d durability .
Visit th e AM S hom e pag e a t URL : http://www.ams.org /
10 9 8 7 6 5 4 3 2 1 0 3 n o n i o n
Q Q Q S
Previous Page Next Page