INTRODUCTION
x m
chapter 6) , and th e third appendi x contain s tables of the elementary divisor s of th e
Gram matrice s o f the integra l Spech t module s fo r n 12.
There ar e few ne w results i n this book; however , man y o f the argument s eithe r
do no t appea r i n th e literatur e or , whe n the y do , their simplicit y i s obscured b y a
more genera l framework . Throughou t w e hav e trie d t o attribut e th e mai n result s
to thei r rightfu l owners ; w e hop e tha t w e hav e succeede d a t th e ver y leas t w e
have provide d a n extensiv e bibliography . Eac h chapter , excep t fo r th e last , end s
with a series o f exercises (coverin g materia l w e have no t ha d tim e fo r i n th e text) ,
together wit h som e historica l note s an d references .
These notes are based upon a series of lectures I gave at the Universitat Bielefel d
in 1997 and a t th e University of Sydney in 1998. I would like to thank th e member s
of bot h audience s fo r thei r encouragement ; especially , Steffe n Koni g an d Clau s
Ringel without who m this book would no t hav e been written. I am als o grateful t o
the participant s o f the representatio n theor y worksho p hel d i n Blaubeure n i n Ma y
1999. Thank s ar e als o due t o th e productio n staf f o f the AMS .
Finally, special thanks go to Susumu Ariki , Jon Brundan , Richar d Dipper , Bo b
Howlett, Gordo n James , Steffe n Konig , Bernar d Leclerc , Fran k Liibec k an d th e
referees fo r thei r man y comments , correction s an d suggestions .
Andrew Matha s
Sydney, 1999
Previous Page Next Page