Contents

Preface vii

Chapter 1. Basic notions 1
 1.1. Tilings 1
 1.2. Tiling spaces 6
 1.3. Equivalence 8
 1.4. Constructing interesting tilings 9

Chapter 2. Tiling spaces and inverse limits 21
 2.1. Local structure 21
 2.2. Inverse limit spaces 21
 2.3. Tiling spaces are inverse limits 22
 2.4. Gähler’s construction 23
 2.5. The Anderson-Putnam construction 25

Chapter 3. Cohomology of tiling spaces 31
 3.1. Direct limits 32
 3.2. Cohomology and limits 33
 3.3. Čech cohomology of an open cover 35
 3.4. Cofinal sets, good covers and open stars 36
 3.5. Cohomology of inverse limits 38
 3.6. Shape deformations 41
 3.7. Topological conjugacy 43

Chapter 4. Relaxing the rules I: Rotations 45
 4.1. A new topology for tiling spaces 46
 4.2. Local structure and global topology 47
 4.3. Inverse limit structures 47
 4.4. Quotients of the tiling space 50
 4.5. Three spaces of chair tilings 50
 4.6. A flat-Earth calculation 52
 4.7. Penrose cohomology 56

Chapter 5. Pattern-equivariant cohomology 61
 5.1. Pattern-equivariant functions 62
 5.2. How to view pattern equivariance 63
 5.3. Integer coefficients 65
 5.4. Interpreting tiling cohomology 66
5.5. Gap labeling and K-theory 67
5.6. Averages and Ruelle-Sullivan currents 68
5.7. PE cohomology and rotations 70

Chapter 6. Tricks of the trade 75
 6.1. One dimensional methods 75
 6.2. Partial collaring 78
 6.3. Relative cohomology and eventual ranges 80
 6.4. Barge-Diamond collaring 83
 6.5. The pinwheel tiling 90

Chapter 7. Relaxing the rules II: Tilings without finite local complexity 95
 7.1. Fault lines 95
 7.2. Analyzing a fault line — 1 dimensional dynamics 98
 7.3. A simple 2-dimensional example 99
 7.4. The local topology of Ω_{Σ} 101
 7.5. Inverse limit structures 102
 7.6. A more involved example 104
 7.7. Conclusions 107

Appendix A. Solutions to selected exercises 109

Bibliography 117