Contents
Preface ix
Overview xi
Chapter 1. From Quadratic Forms to Sphere Packings and Coverings 1
1.1. Positive definite quadratic forms 1
1.2. Lattices and the sphere packing problem 5
1.3. The sphere covering problem 10
1.4. The sphere packing-covering problem 13
Chapter 2. Minkowski Reduction 17
2.1. Reduction in general 17
2.2. Minkowski reduction 18
2.3. Relations to successive minima 21
2.4. Lagarias’ multidimensional continued fraction expansion 23
Chapter 3. Voronoi I 27
3.1. Voronoi’s lattice sphere packing legacy 27
3.2. Extension to periodic sets 37
3.3. Local analysis of periodic sphere packings 39
3.4. Equivariant extension and T -perfect forms 46
Chapter 4. Voronoi II 55
4.1. Voronoi’s second reduction 55
4.2. Extension to periodic sets 60
4.3. Equivariant extension and T -secondary cones 67
4.4. More on Delone polytopes and complexes 74
Chapter 5. Local Analysis of Coverings and Applications 83
5.1. Optimizing sphere coverings 83
5.2. Local analysis of lattice coverings 91
5.3. New, best known coverings and packing-coverings 99
5.4. Classification of totally real thin number fields 110
5.5. The Leech lattice and the root lattice E8 112
5.6. Local lattice covering maxima and pessima 122
5.7. Local covering maxima of subspaces and Minkowski’s conjecture 128
Appendix A. Polyhedral Representation Conversion under Symmetries 131
A.1. Convex polyhedra 131
A.2. Polyhedral symmetries 133
A.3. Orbits of faces 135
vii
Previous Page Next Page