Contents

Preface ix

Part A. Reading the shadows on the wall and formulating a vague conjecture 1

Chapter 1. Complex systems 3
 1. Order and Disorder 3
 2. Ideal gases and the Equiprobability Postulate 4
 3. Apparent randomness of primes and the Riemann Hypothesis 6
 4. Zoo of zeta-functions 10

Chapter 2. Collecting data: Apparent randomness of digit sequences 13
 1. Normal numbers 13
 2. Continued fraction 14
 3. Equidistribution and continued fraction 16
 4. More on continued fraction and diophantine approximation 17

Chapter 3. Collecting data: More randomness in number theory 21
 1. The Twin Prime Conjecture and Independence 21
 2. Finite fields and the congruence Riemann Hypothesis 23
 3. Randomness in the two classical lattice point counting problems 24
 4. The $3n + 1$ Conjecture 27
 5. Primes represented by individual quadratic forms 28
 6. Continued fraction: The length of the period for quadratic irrationals 34

Chapter 4. Laplace and the Principle of Insufficient Reason 37
 1. Introduction 37
 2. Randomness and probability 40
 3. Complexity and randomness of individual sequences 43
 4. Formulating a vague probabilistic conjecture 44
 5. Limitations of the SLG Conjecture 47

Chapter 5. Collecting proofs for the SLG Conjecture 49
 1. When independence is more or less plausible 49
 2. Another Central Limit Theorem: “Randomness of the square root of 2” 53
 3. Problems without apparent independence: Inevitable irregularities—
 an illustration of the Solid-Liquid-Gas Conjecture 58
Part B. More evidence for the SLG Conjecture: Exact solutions in real game theory

Chapter 6. Ramsey Theory and Games
1. The usual quick jump from easy to hard
3. Another hard problem: Ramsey Games
4. Weak Ramsey Games: Here we know the right order of magnitude!
5. Proof of the lower bound in (6.10)
6. An interesting detour: Extremal Hypergraphs of the Erdős–Selfridge theorem and the Move Number
7. Concluding note on off-diagonal Ramsey Numbers

Chapter 7. Practice session (I): More on Ramsey Games and strategies
1. Halving strategy
2. Switching to the complete bipartite graph $K_{n,l}$. Completing the proof of (6.10)
3. Understanding the threshold in (6.10). Random Play Intuition
4. Move Number
5. An interesting detour: Game vs. Ramsey

Chapter 8. Practice session (II): Connectivity games and more strategies
1. Lehman's theorem
2. Erdős's random graph intuition
3. Forcing isolated points
4. The Chvátal–Erdős proof: Quick greedy building
5. Slow building via blocking: The Transversal Hypergraph Method
6. Proof of Proposition 8.3

Chapter 9. What kind of games?
1. Introduction
2. The Tic-Tac-Toe family
3. Where is the breaking point from draw to win? A humiliating gap in our knowledge!
4. First simplification: Replacing ordinary Win with Weak Win

Chapter 10. Exact solutions of games: Understanding via the Equiprobability Postulate
1. Another simplification: Switching from Maker-Breaker games to Cut-and-Choose games
2. Sim and other Clique Games on graphs
3. The concentration of random variables in general
4. How does the Equiprobability Postulate enter real game theory?
5. Rehabilitation of Laplace?

Chapter 11. Equiprobability Postulate with Constraints (Endgame Policy)
1. Introduction
2. Modifying the Equiprobability Postulate with an Endgame Policy
3. Going back to 1-dimensional goals
4. Finding the correct form of the Biased Weak Win Conjecture when Maker is the topdog 139
5. Coalition Games 142
6. Vague Equiprobability Conjecture 143
7. Philosophical speculations on a probabilistic paradigm 145

Chapter 12. Constraints and Threshold Clustering 147
1. What are the constraints of ordinary win? What are the constraints of Ramsey Theory? 147
2. Delicate win or delicate draw? A wonderful question! 151
3. Threshold Clustering 152

Chapter 13. Threshold Clustering and a few bold conjectures 155
1. Examples 155
2. What to do next? Searching for simpler problems 161

Part C. New evidence: Games and Graphs, the Surplus, and the Square Root Law 163

Chapter 14. Yet another simplification: Sparse hypergraphs and the Surplus 165
1. Row-Column Games 165
2. Exact solutions 169
3. The Core-Density and the Surplus 171
4. Remarks 173
5. Regular graphs—local randomness 174
6. How sharp is Theorem 1? 175

Chapter 15. Is Surplus the right concept? (I) 177
1. Socialism does work on graphs! 177
2. Do-It-First Lead 179
3. Monopoly 179
4. Shutout 180
5. Inevitable Shutout 183

Chapter 16. Is Surplus the right concept? (II) 185
1. The Move Number 185
2. Discrepancy and variance 188
3. Summary 189

Chapter 17. Working with a game-theoretic Partition Function 193
1. Introduction 193
2. The lower bound 195
3. Some underdog versions of Proposition 17.3 197

Chapter 18. An attempt to save the Variance 203
1. Introduction 203
2. An alternative approach 204

Chapter 19. Proof of Theorem 1: Combining the variance with an exponential sum 209
1. Defining a complicated potential function 209
Chapter 20. Proof of Theorem 2: The upper bound
1. Can we use the Local Lemma in games? 219
2. Danger function: Big-Game & small-game decomposition 220

Chapter 21. Conclusion (I): More on Theorem 1
1. Threshold Clustering: Generalizations of Theorem 1 227
2. When threshold clustering fails: Shutout games 230
3. Last remark about Theorem 1 233

Chapter 22. Conclusion (II): Beyond the SLG Conjecture
1. Wild speculations: Is it true that most unrestricted do-it-first games are unknowable? 237
2. Weak Win and Infinite Draw 240

Dictionary of the Phrases and Concepts 245

References 247