Contents

Preface ix

Chapter 1. Introduction 1
 1.1. Incidence geometry 2
 1.2. Connections with other areas 4
 1.3. Outline of the book 6
 1.4. Other connections between polynomials and combinatorics 7
 1.5. Notation 7

Chapter 2. Fundamental examples of the polynomial method 9
 2.1. Parameter counting arguments 9
 2.2. The vanishing lemma 10
 2.3. The finite-field Nikodym problem 11
 2.4. The finite field Kakeya problem 12
 2.5. The joints problem 13
 2.6. Comments on the method 15
 2.7. Exercises 17

Chapter 3. Why polynomials? 19
 3.1. Finite field Kakeya without polynomials 19
 3.2. The Hermitian variety 22
 3.3. Joints without polynomials 27
 3.4. What is special about polynomials? 32
 3.5. An example involving polynomials 33
 3.6. Combinatorial structure and algebraic structure 34

Chapter 4. The polynomial method in error-correcting codes 37
 4.1. The Berlekamp-Welch algorithm 37
 4.2. Correcting polynomials from overwhelmingly corrupted data 40
 4.3. Locally decodable codes 41
 4.4. Error-correcting codes and finite-field Nikodym 44
 4.5. Conclusion and exercises 45

Chapter 5. On polynomials and linear algebra in combinatorics 51

Chapter 6. The Bezout theorem 55
 6.1. Proof of the Bezout theorem 55
 6.2. A Bezout theorem about surfaces and lines 58
 6.3. Hilbert polynomials 60
Chapter 7. Incidence geometry 63
 7.1. The Szemerédi-Trotter theorem 64
 7.2. Crossing numbers and the Szemerédi-Trotter theorem 67
 7.3. The language of incidences 71
 7.4. Distance problems in incidence geometry 75
 7.5. Open questions 76
 7.6. Crossing numbers and distance problems 79

Chapter 8. Incidence geometry in three dimensions 85
 8.1. Main results about lines in \mathbb{R}^3 85
 8.2. Higher dimensions 88
 8.3. The Zarankiewicz problem 90
 8.4. Reguli 95

Chapter 9. Partial symmetries 99
 9.1. Partial symmetries of sets in the plane 99
 9.2. Distinct distances and partial symmetries 101
 9.3. Incidence geometry of curves in the group of rigid motions 103
 9.4. Straightening coordinates on G 104
 9.5. Applying incidence geometry of lines to partial symmetries 107
 9.6. The lines of $\mathcal{L}(P)$ don’t cluster in a low degree surface 108
 9.7. Examples of partial symmetries related to planes and reguli 111
 9.8. Other exercises 112

Chapter 10. Polynomial partitioning 113
 10.1. The cutting method 113
 10.2. Polynomial partitioning 116
 10.3. Proof of polynomial partitioning 117
 10.4. Using polynomial partitioning 121
 10.5. Exercises 122
 10.6. First estimates for lines in \mathbb{R}^3 126
 10.7. An estimate for r-rich points 128
 10.8. The main theorem 129

Chapter 11. Combinatorial structure, algebraic structure, and geometric structure 137
 11.1. Structure for configurations of lines with many 3-rich points 137
 11.2. Algebraic structure and degree reduction 139
 11.3. The contagious vanishing argument 140
 11.4. Planar clustering 143
 11.5. Outline of the proof of planar clustering 144
 11.6. Flat points 145
 11.7. The proof of the planar clustering theorem 148
 11.8. Exercises 149

Chapter 12. An incidence bound for lines in three dimensions 151
 12.1. Warmup: The Szemerédi-Trotter theorem revisited 152
 12.2. Three-dimensional incidence estimates 154
<table>
<thead>
<tr>
<th>Chapter 13.</th>
<th>Ruled surfaces and projection theory</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1.</td>
<td>Projection theory</td>
<td>164</td>
</tr>
<tr>
<td>13.2.</td>
<td>Flecnodes and double flecnodes</td>
<td>172</td>
</tr>
<tr>
<td>13.3.</td>
<td>A definition of almost everywhere</td>
<td>173</td>
</tr>
<tr>
<td>13.4.</td>
<td>Constructible conditions are contagious</td>
<td>175</td>
</tr>
<tr>
<td>13.5.</td>
<td>From local to global</td>
<td>176</td>
</tr>
<tr>
<td>13.6.</td>
<td>The proof of the main theorem</td>
<td>183</td>
</tr>
<tr>
<td>13.7.</td>
<td>Remarks on other fields</td>
<td>185</td>
</tr>
<tr>
<td>13.8.</td>
<td>Remarks on the bound $L^{3/2}$</td>
<td>186</td>
</tr>
<tr>
<td>13.9.</td>
<td>Exercises related to projection theory</td>
<td>187</td>
</tr>
<tr>
<td>13.10.</td>
<td>Exercises related to differential geometry</td>
<td>189</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14.</th>
<th>The polynomial method in differential geometry</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.</td>
<td>The efficiency of complex polynomials</td>
<td>195</td>
</tr>
<tr>
<td>14.2.</td>
<td>The efficiency of real polynomials</td>
<td>197</td>
</tr>
<tr>
<td>14.3.</td>
<td>The Crofton formula in integral geometry</td>
<td>198</td>
</tr>
<tr>
<td>14.4.</td>
<td>Finding functions with large zero sets</td>
<td>200</td>
</tr>
<tr>
<td>14.5.</td>
<td>An application of the polynomial method in geometry</td>
<td>201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 15.</th>
<th>Harmonic analysis and the Kakeya problem</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1.</td>
<td>Geometry of projections and the Sobolev inequality</td>
<td>207</td>
</tr>
<tr>
<td>15.2.</td>
<td>L^p estimates for linear operators</td>
<td>211</td>
</tr>
<tr>
<td>15.3.</td>
<td>Intersection patterns of balls in Euclidean space</td>
<td>213</td>
</tr>
<tr>
<td>15.4.</td>
<td>Intersection patterns of tubes in Euclidean space</td>
<td>218</td>
</tr>
<tr>
<td>15.5.</td>
<td>Oscillatory integrals and the Kakeya problem</td>
<td>222</td>
</tr>
<tr>
<td>15.6.</td>
<td>Quantitative bounds for the Kakeya problem</td>
<td>232</td>
</tr>
<tr>
<td>15.7.</td>
<td>The polynomial method and the Kakeya problem</td>
<td>234</td>
</tr>
<tr>
<td>15.8.</td>
<td>A joints theorem for tubes</td>
<td>238</td>
</tr>
<tr>
<td>15.9.</td>
<td>Hermitian varieties</td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 16.</th>
<th>The polynomial method in number theory</th>
<th>249</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1.</td>
<td>Naive guesses about diophantine equations</td>
<td>249</td>
</tr>
<tr>
<td>16.2.</td>
<td>Parabolas, hyperbolas, and high degree curves</td>
<td>251</td>
</tr>
<tr>
<td>16.3.</td>
<td>Diophantine approximation</td>
<td>254</td>
</tr>
<tr>
<td>16.4.</td>
<td>Outline of Thue’s proof</td>
<td>258</td>
</tr>
<tr>
<td>16.5.</td>
<td>Step 1: Parameter counting</td>
<td>259</td>
</tr>
<tr>
<td>16.6.</td>
<td>Step 2: Taylor approximation</td>
<td>263</td>
</tr>
<tr>
<td>16.7.</td>
<td>Step 3: Gauss’s lemma</td>
<td>265</td>
</tr>
<tr>
<td>16.8.</td>
<td>Conclusion</td>
<td>267</td>
</tr>
</tbody>
</table>

| Bibliography | | 269 |