Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
Lecture Notes on Motivic Cohomology
 
Carlo Mazza Rutgers University, Piscataway, NJ
Vladimir Voevodsky Institute for Advanced Study, Princeton, NJ
Charles Weibel Rutgers University, New Brunswick, NJ
A co-publication of the AMS and Clay Mathematics Institute
Lecture Notes on Motivic Cohomology
Softcover ISBN:  978-0-8218-5321-4
Product Code:  CMIM/2.S
List Price: $56.00
MAA Member Price: $50.40
AMS Member Price: $44.80
Lecture Notes on Motivic Cohomology
Click above image for expanded view
Lecture Notes on Motivic Cohomology
Carlo Mazza Rutgers University, Piscataway, NJ
Vladimir Voevodsky Institute for Advanced Study, Princeton, NJ
Charles Weibel Rutgers University, New Brunswick, NJ
A co-publication of the AMS and Clay Mathematics Institute
Softcover ISBN:  978-0-8218-5321-4
Product Code:  CMIM/2.S
List Price: $56.00
MAA Member Price: $50.40
AMS Member Price: $44.80
  • Book Details
     
     
    Clay Mathematics Monographs
    Volume: 22006; 216 pp
    MSC: Primary 14; Secondary 19

    The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural.

    The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999–2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians.

    This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, étale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (étale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five.

    Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

    Readership

    Graduate students and research mathematicians interested in algebraic geometry.

  • Requests
     
     
    Review Copy – for publishers of book reviews
    Accessibility – to request an alternate format of an AMS title
Volume: 22006; 216 pp
MSC: Primary 14; Secondary 19

The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural.

The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999–2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians.

This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, étale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (étale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five.

Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Readership

Graduate students and research mathematicians interested in algebraic geometry.

Review Copy – for publishers of book reviews
Accessibility – to request an alternate format of an AMS title
You may be interested in...
Please select which format for which you are requesting permissions.