Softcover ISBN:  9780821848678 
Product Code:  COLL/54.S 
List Price:  $179.00 
MAA Member Price:  $161.10 
AMS Member Price:  $143.20 
Softcover ISBN:  9780821848678 
Product Code:  COLL/54.S 
List Price:  $179.00 
MAA Member Price:  $161.10 
AMS Member Price:  $143.20 

Book DetailsColloquium PublicationsVolume: 54; 2005; 1044 ppMSC: Primary 42; 05; 34; Secondary 47; 30
This twopart volume gives a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of onedimensional Schrödinger operators.
Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by \(z\) (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line.
The book is suitable for graduate students and researchers interested in analysis.
ReadershipGraduate students and research mathematicians interested in analysis.
This set contains the following item(s): 
Additional Material

Reviews

Simon's work is not just a book about orthogonal polynomials but also about probability measures on onedimensional Schrödinger operators and operator theory. It is extremely complex, multilayered, fascinating, and inspiring, while remaining very readable (even for advanced students). Without a doubt this monograph will become the standard reference for the theory of orthogonal polynomials on the unit circle for a long time to come.
Jahresbericht der DMV 
Undoubtedly that ... this book will become a standard reference in the field tracing the way for future investigations on orthogonal polynomials and their applications. Combining methods from various areas of analysis (calculus, real analysis, functional analysis, complex analysis) as well as by the importance of the orthogonal pholynomials in applications, the book will have a large audience including researchers in mathematics, physics, (and) engineering.
Stefan Cobzas, Studia Universitatis BabesBolyai, Mathematica


RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
 Book Details
 Additional Material
 Reviews
 Requests
This twopart volume gives a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of onedimensional Schrödinger operators.
Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal polynomials, matrix representations for multiplication by \(z\) (CMV matrices), periodic Verblunsky coefficients from the point of view of meromorphic functions on hyperelliptic surfaces, and connections between the theories of orthogonal polynomials on the unit circle and on the real line.
The book is suitable for graduate students and researchers interested in analysis.
Graduate students and research mathematicians interested in analysis.

Simon's work is not just a book about orthogonal polynomials but also about probability measures on onedimensional Schrödinger operators and operator theory. It is extremely complex, multilayered, fascinating, and inspiring, while remaining very readable (even for advanced students). Without a doubt this monograph will become the standard reference for the theory of orthogonal polynomials on the unit circle for a long time to come.
Jahresbericht der DMV 
Undoubtedly that ... this book will become a standard reference in the field tracing the way for future investigations on orthogonal polynomials and their applications. Combining methods from various areas of analysis (calculus, real analysis, functional analysis, complex analysis) as well as by the importance of the orthogonal pholynomials in applications, the book will have a large audience including researchers in mathematics, physics, (and) engineering.
Stefan Cobzas, Studia Universitatis BabesBolyai, Mathematica