Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
The following link can be shared to navigate to this page. You can select the link to copy or click the 'Copy To Clipboard' button below.
Copy To Clipboard
Successfully Copied!
Structured Matrices in Mathematics, Computer Science, and Engineering I
 
Edited by: Vadim Olshevsky Georgia State University, Atlanta, GA
Front Cover for Structured Matrices in Mathematics, Computer Science, and Engineering I
Available Formats:
Electronic ISBN: 978-0-8218-7870-5
Product Code: CONM/280.E
327 pp 
List Price: $96.00
MAA Member Price: $86.40
AMS Member Price: $76.80
Front Cover for Structured Matrices in Mathematics, Computer Science, and Engineering I
Click above image for expanded view
  • Front Cover for Structured Matrices in Mathematics, Computer Science, and Engineering I
  • Back Cover for Structured Matrices in Mathematics, Computer Science, and Engineering I
Structured Matrices in Mathematics, Computer Science, and Engineering I
Edited by: Vadim Olshevsky Georgia State University, Atlanta, GA
Available Formats:
Electronic ISBN:  978-0-8218-7870-5
Product Code:  CONM/280.E
327 pp 
List Price: $96.00
MAA Member Price: $86.40
AMS Member Price: $76.80
  • Book Details
     
     
    Contemporary Mathematics
    Volume: 2802001
    MSC: Primary 15; 47; 65; 93;

    Many important problems in applied sciences, mathematics, and engineering can be reduced to matrix problems. Moreover, various applications often introduce a special structure into the corresponding matrices, so that their entries can be described by a certain compact formula. Classic examples include Toeplitz matrices, Hankel matrices, Vandermonde matrices, Cauchy matrices, Pick matrices, Bezoutians, controllability and observability matrices, and others. Exploiting these and the more general structures often allows us to obtain elegant solutions to mathematical problems as well as to design more efficient practical algorithms for a variety of applied engineering problems.

    Structured matrices have been under close study for a long time and in quite diverse (and seemingly unrelated) areas, for example, mathematics, computer science, and engineering. Considerable progress has recently been made in all these areas, and especially in studying the relevant numerical and computational issues. In the past few years, a number of practical algorithms blending speed and accuracy have been developed. This significant growth is fully reflected in these volumes, which collect 38 papers devoted to the numerous aspects of the topic.

    The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numerical issues. The presentation fully illustrates the fact that the techniques of engineers, mathematicians, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices.

    The book is published in two volumes. The first contains articles on interpolation, system theory, signal and image processing, control theory, and spectral theory. Articles in the second volume are devoted to fast algorithms, numerical and iterative methods, and various applications.

    Readership

    Graduate students and research mathematicians interested in linear and multilinear algebra, matrix theory, operator theory, numerical analysis, and systems theory and control.

    This item is also available as part of a set:
  • Table of Contents
     
     
    • Part I. Interpolation and Approximation [ MR 1850397 ]
    • Harry Dym - Structured matrices, reproducing kernels and interpolation [ MR 1850398 ]
    • Vadim Olshevsky and Amin Shokrollahi - A superfast algorithm for confluent rational tangential interpolation problem via matrix-vector multiplication for confluent Cauchy-like matrices [ MR 1850399 ]
    • S. A. Goreinov and E. E. Tyrtyshnikov - The maximal-volume concept in approximation by low-rank matrices
    • Martin H. Gutknecht - A matrix interpretation of the extended Euclidean algorithm [ MR 1850401 ]
    • Victor M. Adukov - The essential polynomial approach to convergence of matrix Padé approximants [ MR 1850402 ]
    • Part II. System Theory, Signal and Image Processing [ MR 1850397 ]
    • P. Dewilde - Systems of low Hankel rank: a survey [ MR 1850403 ]
    • Eleftherios Kofidis and Phillip A. Regalia - Tensor approximation and signal processing applications [ MR 1850404 ]
    • I. K. Proudler - Exploiting Toeplitz-like structure in adaptive filtering algorithms using signal flow graphs [ MR 1850405 ]
    • Nicola Mastronardi, Philippe Lemmerling and Sabine Van Huffel - The structured total least squares problem [ MR 1850406 ]
    • W. K. Cochran, R. J. Plemmons and T. C. Torgersen - Exploiting Toeplitz structure in atmospheric image restoration [ MR 1850407 ]
    • Part III. Control Theory [ MR 1850397 ]
    • A. C. Antoulas, D. C. Sorensen and S. Gugercin - A survey of model reduction methods for large-scale systems [ MR 1850408 ]
    • Biswa N. Datta and Daniil R. Sarkissian - Theory and computations of some inverse eigenvalue problems for the quadratic pencil [ MR 1850409 ]
    • D. Calvetti, B. Lewis and L. Reichel - Partial eigenvalue assignment for large linear control systems [ MR 1850410 ]
    • Heike Faßbender and Peter Benner - A hybrid method for the numerical solution of discrete-time algebraic Riccati equations [ MR 1850411 ]
    • Part IV. Spectral Properties. Conditioning [ MR 1850397 ]
    • A. Böttcher and S. Grudsky - Condition numbers of large Toeplitz-like matrices [ MR 1850412 ]
    • Dario Fasino and Vadim Olshevsky - How bad are symmetric Pick matrices? [ MR 1850413 ]
    • Miroslav Fiedler - Spectral properties of real Hankel matrices [ MR 1850414 ]
    • Ludwig Elsner and S. Friedland - Conjectures and remarks on the limit of the spectral radius of nonnegative and block Toeplitz matrices [ MR 1850415 ]
  • Request Review Copy
  • Get Permissions
Volume: 2802001
MSC: Primary 15; 47; 65; 93;

Many important problems in applied sciences, mathematics, and engineering can be reduced to matrix problems. Moreover, various applications often introduce a special structure into the corresponding matrices, so that their entries can be described by a certain compact formula. Classic examples include Toeplitz matrices, Hankel matrices, Vandermonde matrices, Cauchy matrices, Pick matrices, Bezoutians, controllability and observability matrices, and others. Exploiting these and the more general structures often allows us to obtain elegant solutions to mathematical problems as well as to design more efficient practical algorithms for a variety of applied engineering problems.

Structured matrices have been under close study for a long time and in quite diverse (and seemingly unrelated) areas, for example, mathematics, computer science, and engineering. Considerable progress has recently been made in all these areas, and especially in studying the relevant numerical and computational issues. In the past few years, a number of practical algorithms blending speed and accuracy have been developed. This significant growth is fully reflected in these volumes, which collect 38 papers devoted to the numerous aspects of the topic.

The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numerical issues. The presentation fully illustrates the fact that the techniques of engineers, mathematicians, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices.

The book is published in two volumes. The first contains articles on interpolation, system theory, signal and image processing, control theory, and spectral theory. Articles in the second volume are devoted to fast algorithms, numerical and iterative methods, and various applications.

Readership

Graduate students and research mathematicians interested in linear and multilinear algebra, matrix theory, operator theory, numerical analysis, and systems theory and control.

This item is also available as part of a set:
  • Part I. Interpolation and Approximation [ MR 1850397 ]
  • Harry Dym - Structured matrices, reproducing kernels and interpolation [ MR 1850398 ]
  • Vadim Olshevsky and Amin Shokrollahi - A superfast algorithm for confluent rational tangential interpolation problem via matrix-vector multiplication for confluent Cauchy-like matrices [ MR 1850399 ]
  • S. A. Goreinov and E. E. Tyrtyshnikov - The maximal-volume concept in approximation by low-rank matrices
  • Martin H. Gutknecht - A matrix interpretation of the extended Euclidean algorithm [ MR 1850401 ]
  • Victor M. Adukov - The essential polynomial approach to convergence of matrix Padé approximants [ MR 1850402 ]
  • Part II. System Theory, Signal and Image Processing [ MR 1850397 ]
  • P. Dewilde - Systems of low Hankel rank: a survey [ MR 1850403 ]
  • Eleftherios Kofidis and Phillip A. Regalia - Tensor approximation and signal processing applications [ MR 1850404 ]
  • I. K. Proudler - Exploiting Toeplitz-like structure in adaptive filtering algorithms using signal flow graphs [ MR 1850405 ]
  • Nicola Mastronardi, Philippe Lemmerling and Sabine Van Huffel - The structured total least squares problem [ MR 1850406 ]
  • W. K. Cochran, R. J. Plemmons and T. C. Torgersen - Exploiting Toeplitz structure in atmospheric image restoration [ MR 1850407 ]
  • Part III. Control Theory [ MR 1850397 ]
  • A. C. Antoulas, D. C. Sorensen and S. Gugercin - A survey of model reduction methods for large-scale systems [ MR 1850408 ]
  • Biswa N. Datta and Daniil R. Sarkissian - Theory and computations of some inverse eigenvalue problems for the quadratic pencil [ MR 1850409 ]
  • D. Calvetti, B. Lewis and L. Reichel - Partial eigenvalue assignment for large linear control systems [ MR 1850410 ]
  • Heike Faßbender and Peter Benner - A hybrid method for the numerical solution of discrete-time algebraic Riccati equations [ MR 1850411 ]
  • Part IV. Spectral Properties. Conditioning [ MR 1850397 ]
  • A. Böttcher and S. Grudsky - Condition numbers of large Toeplitz-like matrices [ MR 1850412 ]
  • Dario Fasino and Vadim Olshevsky - How bad are symmetric Pick matrices? [ MR 1850413 ]
  • Miroslav Fiedler - Spectral properties of real Hankel matrices [ MR 1850414 ]
  • Ludwig Elsner and S. Friedland - Conjectures and remarks on the limit of the spectral radius of nonnegative and block Toeplitz matrices [ MR 1850415 ]
You may be interested in...
Please select which format for which you are requesting permissions.