Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
Share this page via the icons above, or by copying the link below:
Copy To Clipboard
Successfully Copied!
A Course in Operator Theory
 
John B. Conway University of Tennessee, Knoxville, TN
Front Cover for A Course in Operator Theory
Available Formats:
Hardcover ISBN: 978-0-8218-2065-0
Product Code: GSM/21
List Price: $64.00
MAA Member Price: $57.60
AMS Member Price: $51.20
Electronic ISBN: 978-1-4704-2076-5
Product Code: GSM/21.E
List Price: $60.00
MAA Member Price: $54.00
AMS Member Price: $48.00
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $96.00
MAA Member Price: $86.40
AMS Member Price: $76.80
Front Cover for A Course in Operator Theory
Click above image for expanded view
  • Front Cover for A Course in Operator Theory
  • Back Cover for A Course in Operator Theory
A Course in Operator Theory
John B. Conway University of Tennessee, Knoxville, TN
Available Formats:
Hardcover ISBN:  978-0-8218-2065-0
Product Code:  GSM/21
List Price: $64.00
MAA Member Price: $57.60
AMS Member Price: $51.20
Electronic ISBN:  978-1-4704-2076-5
Product Code:  GSM/21.E
List Price: $60.00
MAA Member Price: $54.00
AMS Member Price: $48.00
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $96.00
MAA Member Price: $86.40
AMS Member Price: $76.80
  • Book Details
     
     
    Graduate Studies in Mathematics
    Volume: 212000; 372 pp
    MSC: Primary 47;

    Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing.

    Early chapters introduce and review material on C*-algebras, normal operators, compact operators and non-normal operators. The topics include the spectral theorem, the functional calculus and the Fredholm index. Also, some deep connections between operator theory and analytic functions are presented.

    Later chapters cover more advanced topics, such as representations of C*-algebras, compact perturbations and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. These advanced topics are at the heart of current research.

    The last chapter gives an introduction to reflexive subspaces, i.e., subspaces of operators that are determined by their invariant subspaces. These, along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras.

    Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.

    Readership

    Graduate students and research mathematicians interested in operator theory.

  • Table of Contents
     
     
    • Chapters
    • Chapter 1. Introduction to C*-algebras
    • Chapter 2. Normal operators
    • Chapter 3. Compact operators
    • Chapter 4. Some non-normal operators
    • Chapter 5. More on C*-algebras
    • Chapter 6. Compact perturbations
    • Chapter 7. Introduction to von Neumann algebras
    • Chapter 8. Reflexivity
  • Additional Material
     
     
  • Reviews
     
     
    • John B. Conway belongs to the best authors of basic textbooks … The present book continues this tradition of clear and elegant way of presentation. … this book can be highly recommended for students of operator theory as well as to experts in the field who will find many interesting ideas there.

      Mathematica Bohemica
    • Conway's book adds a complementary volume of study for those just becoming acquainted with the field … shares … a style which is relaxed, yet concise … recommend it to anyone wishing to gain a better understanding of operator theory.

      Bulletin of the London Mathematical Society
    • This is an excellent course in operator theory and operator algebras … leads the reader to deep new results and modern research topics … the author has done more than just write a good book—he has managed to reveal the unspeakable charm of the subject, which is indeed the ‘source of happiness’ for operator theorists.

      Mathematical Reviews
  • Requests
     
     
    Review Copy – for reviewers who would like to review an AMS book
    Permission – for use of book, eBook, or Journal content
    Accessibility – to request an alternate format of an AMS title
Volume: 212000; 372 pp
MSC: Primary 47;

Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing.

Early chapters introduce and review material on C*-algebras, normal operators, compact operators and non-normal operators. The topics include the spectral theorem, the functional calculus and the Fredholm index. Also, some deep connections between operator theory and analytic functions are presented.

Later chapters cover more advanced topics, such as representations of C*-algebras, compact perturbations and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. These advanced topics are at the heart of current research.

The last chapter gives an introduction to reflexive subspaces, i.e., subspaces of operators that are determined by their invariant subspaces. These, along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras.

Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.

Readership

Graduate students and research mathematicians interested in operator theory.

  • Chapters
  • Chapter 1. Introduction to C*-algebras
  • Chapter 2. Normal operators
  • Chapter 3. Compact operators
  • Chapter 4. Some non-normal operators
  • Chapter 5. More on C*-algebras
  • Chapter 6. Compact perturbations
  • Chapter 7. Introduction to von Neumann algebras
  • Chapter 8. Reflexivity
  • John B. Conway belongs to the best authors of basic textbooks … The present book continues this tradition of clear and elegant way of presentation. … this book can be highly recommended for students of operator theory as well as to experts in the field who will find many interesting ideas there.

    Mathematica Bohemica
  • Conway's book adds a complementary volume of study for those just becoming acquainted with the field … shares … a style which is relaxed, yet concise … recommend it to anyone wishing to gain a better understanding of operator theory.

    Bulletin of the London Mathematical Society
  • This is an excellent course in operator theory and operator algebras … leads the reader to deep new results and modern research topics … the author has done more than just write a good book—he has managed to reveal the unspeakable charm of the subject, which is indeed the ‘source of happiness’ for operator theorists.

    Mathematical Reviews
Review Copy – for reviewers who would like to review an AMS book
Permission – for use of book, eBook, or Journal content
Accessibility – to request an alternate format of an AMS title
Please select which format for which you are requesting permissions.