Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
The following link can be shared to navigate to this page. You can select the link to copy or click the 'Copy To Clipboard' button below.
Copy To Clipboard
Successfully Copied!
Introduction to the Theory of Random Processes
 
N. V. Krylov University of Minnesota, Minneapolis, MN
Front Cover for Introduction to the Theory of Random Processes
Available Formats:
Hardcover ISBN: 978-0-8218-2985-1
Product Code: GSM/43
230 pp 
List Price: $47.00
MAA Member Price: $42.30
AMS Member Price: $37.60
Electronic ISBN: 978-1-4704-2094-9
Product Code: GSM/43.E
230 pp 
List Price: $44.00
MAA Member Price: $39.60
AMS Member Price: $35.20
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $70.50
MAA Member Price: $63.45
AMS Member Price: $56.40
Front Cover for Introduction to the Theory of Random Processes
Click above image for expanded view
  • Front Cover for Introduction to the Theory of Random Processes
  • Back Cover for Introduction to the Theory of Random Processes
Introduction to the Theory of Random Processes
N. V. Krylov University of Minnesota, Minneapolis, MN
Available Formats:
Hardcover ISBN:  978-0-8218-2985-1
Product Code:  GSM/43
230 pp 
List Price: $47.00
MAA Member Price: $42.30
AMS Member Price: $37.60
Electronic ISBN:  978-1-4704-2094-9
Product Code:  GSM/43.E
230 pp 
List Price: $44.00
MAA Member Price: $39.60
AMS Member Price: $35.20
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $70.50
MAA Member Price: $63.45
AMS Member Price: $56.40
  • Book Details
     
     
    Graduate Studies in Mathematics
    Volume: 432002
    MSC: Primary 60;

    This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Itô stochastic equations.

    Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used for spectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows for obtaining a representation of trajectories through jump measures. The Itô stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures.

    Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used to obtain them.

    With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study.

    Other works by this author published by the AMS include, Lectures on Elliptic and Parabolic Equations in Hölder Spaces and Introduction to the Theory of Diffusion Processes.

    Readership

    Graduate students and research mathematicians, physicists, and engineers interested in the theory of random processes and its applications.

  • Table of Contents
     
     
    • Chapters
    • Chapter 1. Generalities
    • Chapter 2. The Wiener process
    • Chapter 3. Martingales
    • Chapter 4. Stationary processes
    • Chapter 5. Infinitely divisible processes
    • Chapter 6. Itô stochastic integral
  • Reviews
     
     
    • The book is written in a nice and thorough style. A large number of exercises are contained.

      Zentralblatt MATH
    • An attractive feature of the book, apart from the nice and meticulous style of writing, is that it contains a large number of examples and exercises (and hints for exercises—some of which are certainly quite ambitious and demanding!).

      Mathematical Reviews
  • Request Review Copy
  • Get Permissions
Volume: 432002
MSC: Primary 60;

This book concentrates on some general facts and ideas of the theory of stochastic processes. The topics include the Wiener process, stationary processes, infinitely divisible processes, and Itô stochastic equations.

Basics of discrete time martingales are also presented and then used in one way or another throughout the book. Another common feature of the main body of the book is using stochastic integration with respect to random orthogonal measures. In particular, it is used for spectral representation of trajectories of stationary processes and for proving that Gaussian stationary processes with rational spectral densities are components of solutions to stochastic equations. In the case of infinitely divisible processes, stochastic integration allows for obtaining a representation of trajectories through jump measures. The Itô stochastic integral is also introduced as a particular case of stochastic integrals with respect to random orthogonal measures.

Although it is not possible to cover even a noticeable portion of the topics listed above in a short book, it is hoped that after having followed the material presented here, the reader will have acquired a good understanding of what kind of results are available and what kind of techniques are used to obtain them.

With more than 100 problems included, the book can serve as a text for an introductory course on stochastic processes or for independent study.

Other works by this author published by the AMS include, Lectures on Elliptic and Parabolic Equations in Hölder Spaces and Introduction to the Theory of Diffusion Processes.

Readership

Graduate students and research mathematicians, physicists, and engineers interested in the theory of random processes and its applications.

  • Chapters
  • Chapter 1. Generalities
  • Chapter 2. The Wiener process
  • Chapter 3. Martingales
  • Chapter 4. Stationary processes
  • Chapter 5. Infinitely divisible processes
  • Chapter 6. Itô stochastic integral
  • The book is written in a nice and thorough style. A large number of exercises are contained.

    Zentralblatt MATH
  • An attractive feature of the book, apart from the nice and meticulous style of writing, is that it contains a large number of examples and exercises (and hints for exercises—some of which are certainly quite ambitious and demanding!).

    Mathematical Reviews
You may be interested in...
Please select which format for which you are requesting permissions.