Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
The following link can be shared to navigate to this page. You can select the link to copy or click the 'Copy To Clipboard' button below.
Copy To Clipboard
Successfully Copied!
Resolving Markov Chains onto Bernoulli Shifts via Positive Polynomials
 
Brian Marcus IBM Almaden Research Center, San Jose, CA
Selim Tuncel University of Washington, Seattle, WA
Front Cover for Resolving Markov Chains onto Bernoulli Shifts via Positive Polynomials
Available Formats:
Electronic ISBN: 978-1-4704-0303-4
Product Code: MEMO/150/710.E
98 pp 
List Price: $54.00
MAA Member Price: $48.60
AMS Member Price: $32.40
Front Cover for Resolving Markov Chains onto Bernoulli Shifts via Positive Polynomials
Click above image for expanded view
  • Front Cover for Resolving Markov Chains onto Bernoulli Shifts via Positive Polynomials
  • Back Cover for Resolving Markov Chains onto Bernoulli Shifts via Positive Polynomials
Resolving Markov Chains onto Bernoulli Shifts via Positive Polynomials
Brian Marcus IBM Almaden Research Center, San Jose, CA
Selim Tuncel University of Washington, Seattle, WA
Available Formats:
Electronic ISBN:  978-1-4704-0303-4
Product Code:  MEMO/150/710.E
98 pp 
List Price: $54.00
MAA Member Price: $48.60
AMS Member Price: $32.40
  • Book Details
     
     
    Memoirs of the American Mathematical Society
    Volume: 1502001
    MSC: Primary 28; 11; Secondary 05; 94;

    The two parts of this Memoir contain two separate but related papers. The longer paper in Part A obtains necessary and sufficient conditions for several types of codings of Markov chains onto Bernoulli shifts. It proceeds by replacing the defining stochastic matrix of each Markov chain by a matrix whose entries are polynomials with positive coefficients in several variables; a Bernoulli shift is represented by a single polynomial with positive coefficients, \(p\). This transforms jointly topological and measure-theoretic coding problems into combinatorial ones. In solving the combinatorial problems in Part A, we state and make use of facts from Part B concerning \(p^n\) and its coefficients.

    Part B contains the shorter paper on \(p^n\) and its coefficients, and is independent of Part A.

    An announcement describing the contents of this Memoir may be found in the Electronic Research Announcements of the AMS at the following Web address: www.ams.org/era/

    Readership

    Graduate students and research mathematicians working in measure and integration.

  • Table of Contents
     
     
    • Chapters
    • A. Resolving Markov chains onto Bernoulli shifts
    • 1. Introduction
    • 2. Weighted graphs and polynomial matrices
    • 3. The main results
    • 4. Markov chains and regular isomorphism
    • 5. Necessity of the conditions
    • 6. Totally conforming eigenvectors and the one-variable case
    • 7. Splitting the conforming eigenvector in the one-variable case
    • 8. Totally conforming eigenvectors for the general case
    • 9. Splitting the conforming eigenvector in the general case
    • B. On large powers of positive polynomials in several variables
    • 1. Introduction
    • 2. Structure of $\operatorname {Log}(p^n)$
    • 3. Entropy and equilibrium distributions for $w\in W(p)$
    • 4. Equilibrium distributions and coefficients of $p^n$
    • 5. Proofs of the estimates
  • Request Review Copy
  • Get Permissions
Volume: 1502001
MSC: Primary 28; 11; Secondary 05; 94;

The two parts of this Memoir contain two separate but related papers. The longer paper in Part A obtains necessary and sufficient conditions for several types of codings of Markov chains onto Bernoulli shifts. It proceeds by replacing the defining stochastic matrix of each Markov chain by a matrix whose entries are polynomials with positive coefficients in several variables; a Bernoulli shift is represented by a single polynomial with positive coefficients, \(p\). This transforms jointly topological and measure-theoretic coding problems into combinatorial ones. In solving the combinatorial problems in Part A, we state and make use of facts from Part B concerning \(p^n\) and its coefficients.

Part B contains the shorter paper on \(p^n\) and its coefficients, and is independent of Part A.

An announcement describing the contents of this Memoir may be found in the Electronic Research Announcements of the AMS at the following Web address: www.ams.org/era/

Readership

Graduate students and research mathematicians working in measure and integration.

  • Chapters
  • A. Resolving Markov chains onto Bernoulli shifts
  • 1. Introduction
  • 2. Weighted graphs and polynomial matrices
  • 3. The main results
  • 4. Markov chains and regular isomorphism
  • 5. Necessity of the conditions
  • 6. Totally conforming eigenvectors and the one-variable case
  • 7. Splitting the conforming eigenvector in the one-variable case
  • 8. Totally conforming eigenvectors for the general case
  • 9. Splitting the conforming eigenvector in the general case
  • B. On large powers of positive polynomials in several variables
  • 1. Introduction
  • 2. Structure of $\operatorname {Log}(p^n)$
  • 3. Entropy and equilibrium distributions for $w\in W(p)$
  • 4. Equilibrium distributions and coefficients of $p^n$
  • 5. Proofs of the estimates
Please select which format for which you are requesting permissions.