Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
The following link can be shared to navigate to this page. You can select the link to copy or click the 'Copy To Clipboard' button below.
Copy To Clipboard
Successfully Copied!
Compact Lie Groups and Their Representations
 
Front Cover for Compact Lie Groups and Their Representations
Available Formats:
Softcover ISBN: 978-0-8218-1590-8
Product Code: MMONO/40
List Price: $131.00
MAA Member Price: $117.90
AMS Member Price: $104.80
Electronic ISBN: 978-1-4704-4455-6
Product Code: MMONO/40.E
List Price: $131.00
MAA Member Price: $117.90
AMS Member Price: $104.80
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $196.50
MAA Member Price: $176.85
AMS Member Price: $157.20
Front Cover for Compact Lie Groups and Their Representations
Click above image for expanded view
Compact Lie Groups and Their Representations
Available Formats:
Softcover ISBN:  978-0-8218-1590-8
Product Code:  MMONO/40
List Price: $131.00
MAA Member Price: $117.90
AMS Member Price: $104.80
Electronic ISBN:  978-1-4704-4455-6
Product Code:  MMONO/40.E
List Price: $131.00
MAA Member Price: $117.90
AMS Member Price: $104.80
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $196.50
MAA Member Price: $176.85
AMS Member Price: $157.20
  • Book Details
     
     
    Translations of Mathematical Monographs
    Volume: 401973; 448 pp
    MSC: Primary 22; Secondary 17;

    The contents of this volume are somewhat different from the traditional connotations of the title. First, the author, bearing in mind the needs of the physicist, has tried to make the exposition as elementary as possible. The need for an elementary exposition has influenced the distribution of the material; the book is divided into three largely independent parts, arranged in order of increasing difficulty. Besides compact Lie groups, groups with other topological structure (“similar” to compact groups in some sense) are considered. Prominent among these are reductive complex Lie groups (including semisimple groups), obtained from compact Lie groups by analytic continuation, and also their real forms (reductive real Lie groups). The theory of finite-dimensional representation for these classes of groups is developed, striving whenever possible to emphasize the “compact origin” of these representations, i.e. their analytic relationship to representations of compact Lie groups. Also studied are infinite-dimensional representations of semisimple complex Lie algebras. Some aspects of the theory of infinite-dimensional representations of Lie groups are presented in a brief survey.

    Readership

  • Table of Contents
     
     
    • Chapters
    • Preface
    • Topological groups. Lie groups
    • Linear groups
    • Fundamental problems of representation theory
    • Compact Lie groups. Global theorem
    • The infinitesimal method in representation theory
    • Analytic continuation
    • Irreducible representations of the group $\mathrm {U}(n)$
    • Tensors and Young diagrams
    • Casimir operators
    • Indicator systems and the Gel′fand-Cetlin basis
    • Characters
    • Tensor product of two irreducible representations of $\mathrm {U}(n)$
    • Basic types of Lie algebras and Lie groups
    • Classification of compact and reductive Lie algebras
    • Compact Lie groups in the large
    • Description of irreducible finite-dimensonal representations
    • Infinitesimal theory (characters, weights, Casimir operators)
    • Some problems of spectral analysis for finite-dimensional representations
  • Request Review Copy
  • Get Permissions
Volume: 401973; 448 pp
MSC: Primary 22; Secondary 17;

The contents of this volume are somewhat different from the traditional connotations of the title. First, the author, bearing in mind the needs of the physicist, has tried to make the exposition as elementary as possible. The need for an elementary exposition has influenced the distribution of the material; the book is divided into three largely independent parts, arranged in order of increasing difficulty. Besides compact Lie groups, groups with other topological structure (“similar” to compact groups in some sense) are considered. Prominent among these are reductive complex Lie groups (including semisimple groups), obtained from compact Lie groups by analytic continuation, and also their real forms (reductive real Lie groups). The theory of finite-dimensional representation for these classes of groups is developed, striving whenever possible to emphasize the “compact origin” of these representations, i.e. their analytic relationship to representations of compact Lie groups. Also studied are infinite-dimensional representations of semisimple complex Lie algebras. Some aspects of the theory of infinite-dimensional representations of Lie groups are presented in a brief survey.

Readership

  • Chapters
  • Preface
  • Topological groups. Lie groups
  • Linear groups
  • Fundamental problems of representation theory
  • Compact Lie groups. Global theorem
  • The infinitesimal method in representation theory
  • Analytic continuation
  • Irreducible representations of the group $\mathrm {U}(n)$
  • Tensors and Young diagrams
  • Casimir operators
  • Indicator systems and the Gel′fand-Cetlin basis
  • Characters
  • Tensor product of two irreducible representations of $\mathrm {U}(n)$
  • Basic types of Lie algebras and Lie groups
  • Classification of compact and reductive Lie algebras
  • Compact Lie groups in the large
  • Description of irreducible finite-dimensonal representations
  • Infinitesimal theory (characters, weights, Casimir operators)
  • Some problems of spectral analysis for finite-dimensional representations
Please select which format for which you are requesting permissions.