Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
The following link can be shared to navigate to this page. You can select the link to copy or click the 'Copy To Clipboard' button below.
Copy To Clipboard
Successfully Copied!
Nonlocal Diffusion Problems
 
José M. Mazón Universitat de València, València, Spain
Julio D. Rossi Universidad de Alicante, Alicante, Spain
J. Julián Toledo-Melero Universitat de València, València, Spain
Front Cover for Nonlocal Diffusion Problems
Available Formats:
Hardcover ISBN: 978-0-8218-5230-9
Product Code: SURV/165
256 pp 
List Price: $93.00
MAA Member Price: $83.70
AMS Member Price: $74.40
Electronic ISBN: 978-1-4704-1392-7
Product Code: SURV/165.E
256 pp 
List Price: $87.00
MAA Member Price: $78.30
AMS Member Price: $69.60
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $139.50
MAA Member Price: $125.55
AMS Member Price: $111.60
Front Cover for Nonlocal Diffusion Problems
Click above image for expanded view
  • Front Cover for Nonlocal Diffusion Problems
  • Back Cover for Nonlocal Diffusion Problems
Nonlocal Diffusion Problems
José M. Mazón Universitat de València, València, Spain
Julio D. Rossi Universidad de Alicante, Alicante, Spain
J. Julián Toledo-Melero Universitat de València, València, Spain
Available Formats:
Hardcover ISBN:  978-0-8218-5230-9
Product Code:  SURV/165
256 pp 
List Price: $93.00
MAA Member Price: $83.70
AMS Member Price: $74.40
Electronic ISBN:  978-1-4704-1392-7
Product Code:  SURV/165.E
256 pp 
List Price: $87.00
MAA Member Price: $78.30
AMS Member Price: $69.60
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $139.50
MAA Member Price: $125.55
AMS Member Price: $111.60
  • Book Details
     
     
    Mathematical Surveys and Monographs
    Volume: 1652010
    MSC: Primary 45; 47; 35;

    Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content.

    This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the \(p\)-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin.

    Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers.

    The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.

    This book is published in cooperation with Real Sociedád Matematica Española.
    Readership

    Graduate students and research mathematicians interested in diffusion problems and nonlinear PDEs.

  • Table of Contents
     
     
    • Chapters
    • 1. The Cauchy problem for linear nonlocal diffusion
    • 2. The Dirichlet problem for linear nonlocal diffusion
    • 3. The Neumann problem for linear nonlocal diffusion
    • 4. A nonlocal convection diffusion problem
    • 5. The Neumann problem for a nonlocal nonlinear diffusion equation
    • 6. Nonlocal $p$-Laplacian evolution problems
    • 7. The nonlocal total variation flow
    • 8. Nonlocal models for sandpiles
    • 9. Nonlinear semigroups
  • Reviews
     
     
    • The results of this book are given with complete proofs and also an emphasis on the intuitive understanding of the results. This extends the audience beyond mathematicians to include engineers, physicists and biologists with a good background in Analysis and PDEs.

      Mathematical Reviews
  • Request Review Copy
  • Get Permissions
Volume: 1652010
MSC: Primary 45; 47; 35;

Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content.

This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the \(p\)-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin.

Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers.

The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.

This book is published in cooperation with Real Sociedád Matematica Española.
Readership

Graduate students and research mathematicians interested in diffusion problems and nonlinear PDEs.

  • Chapters
  • 1. The Cauchy problem for linear nonlocal diffusion
  • 2. The Dirichlet problem for linear nonlocal diffusion
  • 3. The Neumann problem for linear nonlocal diffusion
  • 4. A nonlocal convection diffusion problem
  • 5. The Neumann problem for a nonlocal nonlinear diffusion equation
  • 6. Nonlocal $p$-Laplacian evolution problems
  • 7. The nonlocal total variation flow
  • 8. Nonlocal models for sandpiles
  • 9. Nonlinear semigroups
  • The results of this book are given with complete proofs and also an emphasis on the intuitive understanding of the results. This extends the audience beyond mathematicians to include engineers, physicists and biologists with a good background in Analysis and PDEs.

    Mathematical Reviews
You may be interested in...
Please select which format for which you are requesting permissions.