Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
The following link can be shared to navigate to this page. You can select the link to copy or click the 'Copy To Clipboard' button below.
Copy To Clipboard
Successfully Copied!
Approximation by Polynomials with Integral Coefficients
 
Front Cover for Approximation by Polynomials with Integral Coefficients
Available Formats:
Hardcover ISBN: 978-0-8218-1517-5
Product Code: SURV/17
160 pp 
List Price: $64.00
MAA Member Price: $57.60
AMS Member Price: $51.20
Electronic ISBN: 978-1-4704-1244-9
Product Code: SURV/17.E
160 pp 
List Price: $60.00
MAA Member Price: $54.00
AMS Member Price: $48.00
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $96.00
MAA Member Price: $86.40
AMS Member Price: $76.80
Front Cover for Approximation by Polynomials with Integral Coefficients
Click above image for expanded view
Approximation by Polynomials with Integral Coefficients
Available Formats:
Hardcover ISBN:  978-0-8218-1517-5
Product Code:  SURV/17
160 pp 
List Price: $64.00
MAA Member Price: $57.60
AMS Member Price: $51.20
Electronic ISBN:  978-1-4704-1244-9
Product Code:  SURV/17.E
160 pp 
List Price: $60.00
MAA Member Price: $54.00
AMS Member Price: $48.00
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $96.00
MAA Member Price: $86.40
AMS Member Price: $76.80
  • Book Details
     
     
    Mathematical Surveys and Monographs
    Volume: 171980
    MSC: Primary 41;

    Results in the approximation of functions by polynomials with coefficients which are integers have been appearing since that of Pál in 1914. The body of results has grown to an extent which seems to justify this book. The intention here is to make these results as accessible as possible.

    The book addresses essentially two questions. The first is the question of what functions can be approximated by polynomials whose coefficients are integers and the second question is how well are they approximated (Jackson type theorems). For example, a continuous function \(f\) on the interval \(-1,1\) can be uniformly approximated by polynomials with integral coefficients if and only if it takes on integral values at \(-1,0\) and \(+1\) and the quantity \(f(1)+f(0)\) is divisible by \(2\). The results regarding the second question are very similar to the corresponding results regarding approximation by polynomials with arbitrary coefficients. In particular, nonuniform estimates in terms of the modules of continuity of the approximated function are obtained.

    Aside from the intrinsic interest to the pure mathematician, there is the likelihood of important applications to other areas of mathematics; for example, in the simulation of transcendental functions on computers. In most computers, fixed point arithmetic is faster than floating point arithmetic and it may be possible to take advantage of this fact in the evaluation of integral polynomials to create more efficient simulations. Another promising area for applications of this research is in the design of digital filters. A central step in the design procedure is the approximation of a desired system function by a polynomial or rational function. Since only finitely many binary digits of accuracy actually can be realized for the coefficients of these functions in any real filter the problem amounts (to within a scale factor) to approximation by polynomials or rational functions with integral coefficients.

  • Table of Contents
     
     
    • Chapters
    • Introduction
    • Part I. Preliminaries
    • 1. Discrete rings
    • 2. Čebyšev polynomials and transfinite diameter
    • 3. Algebraic kernels
    • Part II. Qualitative results
    • 4. Complex case I: Void interior
    • 5. Real case
    • 6. Adelic case
    • 7. Complex case II: Nonvoid interior
    • 8. Müntz’s theorem and integral polynomials
    • 9. A Stone-Weierstrass type theorem
    • 10. Miscellaneous results
    • Part III. Quantitative results
    • 11. Analytic functions
    • 12. Finitely differentiable functions
    • 14. Part IV. Historical notes and remarks
  • Request Review Copy
  • Get Permissions
Volume: 171980
MSC: Primary 41;

Results in the approximation of functions by polynomials with coefficients which are integers have been appearing since that of Pál in 1914. The body of results has grown to an extent which seems to justify this book. The intention here is to make these results as accessible as possible.

The book addresses essentially two questions. The first is the question of what functions can be approximated by polynomials whose coefficients are integers and the second question is how well are they approximated (Jackson type theorems). For example, a continuous function \(f\) on the interval \(-1,1\) can be uniformly approximated by polynomials with integral coefficients if and only if it takes on integral values at \(-1,0\) and \(+1\) and the quantity \(f(1)+f(0)\) is divisible by \(2\). The results regarding the second question are very similar to the corresponding results regarding approximation by polynomials with arbitrary coefficients. In particular, nonuniform estimates in terms of the modules of continuity of the approximated function are obtained.

Aside from the intrinsic interest to the pure mathematician, there is the likelihood of important applications to other areas of mathematics; for example, in the simulation of transcendental functions on computers. In most computers, fixed point arithmetic is faster than floating point arithmetic and it may be possible to take advantage of this fact in the evaluation of integral polynomials to create more efficient simulations. Another promising area for applications of this research is in the design of digital filters. A central step in the design procedure is the approximation of a desired system function by a polynomial or rational function. Since only finitely many binary digits of accuracy actually can be realized for the coefficients of these functions in any real filter the problem amounts (to within a scale factor) to approximation by polynomials or rational functions with integral coefficients.

  • Chapters
  • Introduction
  • Part I. Preliminaries
  • 1. Discrete rings
  • 2. Čebyšev polynomials and transfinite diameter
  • 3. Algebraic kernels
  • Part II. Qualitative results
  • 4. Complex case I: Void interior
  • 5. Real case
  • 6. Adelic case
  • 7. Complex case II: Nonvoid interior
  • 8. Müntz’s theorem and integral polynomials
  • 9. A Stone-Weierstrass type theorem
  • 10. Miscellaneous results
  • Part III. Quantitative results
  • 11. Analytic functions
  • 12. Finitely differentiable functions
  • 14. Part IV. Historical notes and remarks
Please select which format for which you are requesting permissions.