Item Successfully Added to Cart
An error was encountered while trying to add the item to the cart. Please try again.
OK
Please make all selections above before adding to cart
OK
The following link can be shared to navigate to this page. You can select the link to copy or click the 'Copy To Clipboard' button below.
Copy To Clipboard
Successfully Copied!
Topology of Tiling Spaces
 
Lorenzo Sadun University of Texas, Austin, Austin, TX
Front Cover for Topology of Tiling Spaces
Available Formats:
Softcover ISBN: 978-0-8218-4727-5
Product Code: ULECT/46
118 pp 
List Price: $34.00
MAA Member Price: $30.60
AMS Member Price: $27.20
Electronic ISBN: 978-1-4704-1835-9
Product Code: ULECT/46.E
118 pp 
List Price: $32.00
MAA Member Price: $28.80
AMS Member Price: $25.60
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $51.00
MAA Member Price: $45.90
AMS Member Price: $40.80
Front Cover for Topology of Tiling Spaces
Click above image for expanded view
  • Front Cover for Topology of Tiling Spaces
  • Back Cover for Topology of Tiling Spaces
Topology of Tiling Spaces
Lorenzo Sadun University of Texas, Austin, Austin, TX
Available Formats:
Softcover ISBN:  978-0-8218-4727-5
Product Code:  ULECT/46
118 pp 
List Price: $34.00
MAA Member Price: $30.60
AMS Member Price: $27.20
Electronic ISBN:  978-1-4704-1835-9
Product Code:  ULECT/46.E
118 pp 
List Price: $32.00
MAA Member Price: $28.80
AMS Member Price: $25.60
Bundle Print and Electronic Formats and Save!
This product is available for purchase as a bundle. Purchasing as a bundle enables you to save on the electronic version.
List Price: $51.00
MAA Member Price: $45.90
AMS Member Price: $40.80
  • Book Details
     
     
    University Lecture Series
    Volume: 462008
    MSC: Primary 52; 55;

    Aperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden “symmetries” that were previously considered impossible, while the tilings themselves were quite striking.

    The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed. This broader study naturally leads to the topology of tiling spaces.

    This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to read, and far too hard to write! Rather, it is a review of the explosion of recent work on tiling spaces as inverse limits, on the cohomology of tiling spaces, on substitution tilings and the role of rotations, and on tilings that do not have finite local complexity. Powerful computational techniques have been developed, as have new ways of thinking about tiling spaces.

    The text contains a generous supply of examples and exercises.

    Readership

    Graduate students and research mathematicians interested in topology, dynamical systems, and aperiodic tilings.

  • Table of Contents
     
     
    • Chapters
    • Chapter 1. Basic notions
    • Chapter 2. Tiling spaces and inverse limits
    • Chapter 3. Cohomology of tilings spaces
    • Chapter 4. Relaxing the rules I: Rotations
    • Chapter 5. Pattern-equivariant cohomology
    • Chapter 6. Tricks of the trade
    • Chapter 7. Relaxing the rules II: Tilings without finite local complexity
    • Appendix A. Solutions to selected exercises
  • Reviews
     
     
    • Overall, this is a nice text and a welcome addition to the still rather incomplete literature on aperiodic order.

      Zentralblatt MATH
  • Request Review Copy
  • Get Permissions
Volume: 462008
MSC: Primary 52; 55;

Aperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden “symmetries” that were previously considered impossible, while the tilings themselves were quite striking.

The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed. This broader study naturally leads to the topology of tiling spaces.

This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to read, and far too hard to write! Rather, it is a review of the explosion of recent work on tiling spaces as inverse limits, on the cohomology of tiling spaces, on substitution tilings and the role of rotations, and on tilings that do not have finite local complexity. Powerful computational techniques have been developed, as have new ways of thinking about tiling spaces.

The text contains a generous supply of examples and exercises.

Readership

Graduate students and research mathematicians interested in topology, dynamical systems, and aperiodic tilings.

  • Chapters
  • Chapter 1. Basic notions
  • Chapter 2. Tiling spaces and inverse limits
  • Chapter 3. Cohomology of tilings spaces
  • Chapter 4. Relaxing the rules I: Rotations
  • Chapter 5. Pattern-equivariant cohomology
  • Chapter 6. Tricks of the trade
  • Chapter 7. Relaxing the rules II: Tilings without finite local complexity
  • Appendix A. Solutions to selected exercises
  • Overall, this is a nice text and a welcome addition to the still rather incomplete literature on aperiodic order.

    Zentralblatt MATH
You may be interested in...
Please select which format for which you are requesting permissions.