Softcover ISBN: | 978-0-8218-0487-2 |
Product Code: | ULECT/8 |
List Price: | $69.00 |
MAA Member Price: | $62.10 |
AMS Member Price: | $55.20 |
eBook ISBN: | 978-1-4704-2157-1 |
Product Code: | ULECT/8.E |
List Price: | $65.00 |
MAA Member Price: | $58.50 |
AMS Member Price: | $52.00 |
Softcover ISBN: | 978-0-8218-0487-2 |
eBook: ISBN: | 978-1-4704-2157-1 |
Product Code: | ULECT/8.B |
List Price: | $134.00 $101.50 |
MAA Member Price: | $120.60 $91.35 |
AMS Member Price: | $107.20 $81.20 |
Softcover ISBN: | 978-0-8218-0487-2 |
Product Code: | ULECT/8 |
List Price: | $69.00 |
MAA Member Price: | $62.10 |
AMS Member Price: | $55.20 |
eBook ISBN: | 978-1-4704-2157-1 |
Product Code: | ULECT/8.E |
List Price: | $65.00 |
MAA Member Price: | $58.50 |
AMS Member Price: | $52.00 |
Softcover ISBN: | 978-0-8218-0487-2 |
eBook ISBN: | 978-1-4704-2157-1 |
Product Code: | ULECT/8.B |
List Price: | $134.00 $101.50 |
MAA Member Price: | $120.60 $91.35 |
AMS Member Price: | $107.20 $81.20 |
-
Book DetailsUniversity Lecture SeriesVolume: 8; 1996; 162 ppMSC: Primary 13; 14; Secondary 52; 90
This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centers around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal).
The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.
ReadershipGraduate students and mathematicians interested in computer science and theoretical operations research.
-
Table of Contents
-
Chapters
-
Chapter 1. Gröbner basics
-
Chapter 2. The state polytope
-
Chapter 3. Variation of term orders
-
Chapter 4. Toric ideals
-
Chapter 5. Enumeration, sampling and integer programming
-
Chapter 6. Primitive partition identities
-
Chapter 7. Universal Gröbner bases
-
Chapter 8. Regular triangulations
-
Chapter 9. The second hypersimplex
-
Chapter 10. $\mathcal {A}$-graded algebras
-
Chapter 11. Canonical subalgebra bases
-
Chapter 12. Generators, Betti numbers and localizations
-
Chapter 13. Toric varieties in algebraic geometry
-
Chapter 14. Some specific Gröbner bases
-
-
Reviews
-
This book is a state-of-the-art account of the rich interplay between combinatorics and geometry of convex polytopes and computational commutative algebra via the tool of Gröbner bases. It is an essential introduction for those who wish to perform research in this fast-developing, interdisciplinary field. For the math programmer, this book could be viewed as an exposition of the interactions between integer programming and Gröbner bases.
Optima -
Material is presented in a concise way ... lots of motivating examples ... not only of interest for mathematicians studying Gröbner bases, but also for researchers working on the mathematical aspects of integer programming and computational statistics.
Newsletter on Computational and Applied Mathematics -
Thanks to the author's ingenious writing, most of the material should be accessible to first-year graduate students in mathematics ... will be a landmark for further study of Gröbner bases in new branches of mathematics. It underlines the powerful techniques of commutative algebra in the interplay with combinatorics and polyhedral geometry.
Mathematical Reviews -
The methods discussed in the book lead to substantial conceptual insights.
Zentralblatt MATH -
The exposition is clear and very well motivated. There is an abundance of illustrative examples; often, the same example is carried through a number of chapters to give coherence to the discussion ... The reader will be amply rewarded, as this is an elegantly written work of wide scholarship.
Bulletin of the London Mathematical Society -
This monograph represents a well written introduction to a rapidly developing field of algebra. The exercises and bibliographical remarks included will make it easy for the reader keen on understanding the interplay between commutative algebra and the subjects quoted above to gain deeper insight.
Monatshefte für Mathematik
-
-
RequestsReview Copy – for publishers of book reviewsPermission – for use of book, eBook, or Journal contentAccessibility – to request an alternate format of an AMS title
- Book Details
- Table of Contents
- Reviews
- Requests
This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centers around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal).
The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.
Graduate students and mathematicians interested in computer science and theoretical operations research.
-
Chapters
-
Chapter 1. Gröbner basics
-
Chapter 2. The state polytope
-
Chapter 3. Variation of term orders
-
Chapter 4. Toric ideals
-
Chapter 5. Enumeration, sampling and integer programming
-
Chapter 6. Primitive partition identities
-
Chapter 7. Universal Gröbner bases
-
Chapter 8. Regular triangulations
-
Chapter 9. The second hypersimplex
-
Chapter 10. $\mathcal {A}$-graded algebras
-
Chapter 11. Canonical subalgebra bases
-
Chapter 12. Generators, Betti numbers and localizations
-
Chapter 13. Toric varieties in algebraic geometry
-
Chapter 14. Some specific Gröbner bases
-
This book is a state-of-the-art account of the rich interplay between combinatorics and geometry of convex polytopes and computational commutative algebra via the tool of Gröbner bases. It is an essential introduction for those who wish to perform research in this fast-developing, interdisciplinary field. For the math programmer, this book could be viewed as an exposition of the interactions between integer programming and Gröbner bases.
Optima -
Material is presented in a concise way ... lots of motivating examples ... not only of interest for mathematicians studying Gröbner bases, but also for researchers working on the mathematical aspects of integer programming and computational statistics.
Newsletter on Computational and Applied Mathematics -
Thanks to the author's ingenious writing, most of the material should be accessible to first-year graduate students in mathematics ... will be a landmark for further study of Gröbner bases in new branches of mathematics. It underlines the powerful techniques of commutative algebra in the interplay with combinatorics and polyhedral geometry.
Mathematical Reviews -
The methods discussed in the book lead to substantial conceptual insights.
Zentralblatt MATH -
The exposition is clear and very well motivated. There is an abundance of illustrative examples; often, the same example is carried through a number of chapters to give coherence to the discussion ... The reader will be amply rewarded, as this is an elegantly written work of wide scholarship.
Bulletin of the London Mathematical Society -
This monograph represents a well written introduction to a rapidly developing field of algebra. The exercises and bibliographical remarks included will make it easy for the reader keen on understanding the interplay between commutative algebra and the subjects quoted above to gain deeper insight.
Monatshefte für Mathematik